Skip to main content
Log in

Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Gait abnormalities following neurological disorders are often disabling, negatively affecting patients’ quality of life. Therefore, regaining of walking is considered one of the primary objectives of the rehabilitation process. To overcome problems related to conventional physical therapy, in the last years there has been an intense technological development of robotic devices, and robotic rehabilitation has proved to play a major role in improving one’s ability to walk. The robotic rehabilitation systems can be classified into stationary and overground walking systems, and several studies have demonstrated their usefulness in patients after severe acquired brain injury, spinal cord injury and other neurological diseases, including Parkinson’s disease, multiple sclerosis and cerebral palsy. In this review, we want to highlight which are the most widely used devices today for gait neurological rehabilitation, focusing on their functioning, effectiveness and challenges. Novel and promising rehabilitation tools, including the use of virtual reality, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Xie Ming (2004) Fundamentals of robotics: linking perception to action. Singapore-MIT Alliance & Nanyang Technological University, Singapore

    Google Scholar 

  2. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J (2004) The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil 18(8):833–862

    Article  PubMed  Google Scholar 

  3. Cramer SC, Riley JD (2008) Neuroplasticity and brain repair after stroke. Curr Opin Neurol 21(1):76–82

    Article  PubMed  Google Scholar 

  4. French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, Langhorne P,Price CI, Walker A, Watkins CL (2007) Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 4:CD006073

  5. Kraus JF, McArthur DL (1996) Epidemiologic aspects of brain injury. Neurol Clin 14(2):435–450

    Article  CAS  PubMed  Google Scholar 

  6. Kolominsky-Rabas PL, Heuschmann PU (2002) Incidence, etiology and long-term prognosis of stroke. Fortschr Neurol Psychiatr 70:657–662

    Article  CAS  PubMed  Google Scholar 

  7. Dobkin BH (2005) Clinical practice. Rehabilitation after stroke. N Engl J Med 352:1677–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colombo G, Joer M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700

    CAS  PubMed  Google Scholar 

  9. Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG (2003) Motor learning elicited by voluntary drive. Brain 126(Pt 4):866–872

    Article  PubMed  Google Scholar 

  10. Nudo RJ (2003) Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 14(1 Suppl):S57–S76

    Article  PubMed  Google Scholar 

  11. Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G (2014) The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 11(2):187–198

    Article  CAS  PubMed  Google Scholar 

  12. Hesse S, Bertelt C, Schaffrin A, Malezic A, Mauritz KH (1994) Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body-weight support. Arch Phys Med Rehabil 75(10):1087–1093

    Article  CAS  PubMed  Google Scholar 

  13. Nilsson L, Carlsson J, Danielsson A, Fugl-Meyer A, Hellström K, Kristensen L, Sjölund B, Sunnerhagen KS, Grimby G (2001) Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 15(5):515–527

    Article  CAS  PubMed  Google Scholar 

  14. Iosa M, Morone G, Fusco A, Bragoni M, Coiro P, Multari M, Venturiero V, De Angelis D, Pratesi L, Paolucci S (2012) Seven capital devices for the future of stroke rehabilitation. Stroke Res Treat 2012:187965

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mehrholz J, Pohl M (2012) Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoscelton devices. J Rehabil Med 44:193–199

    Article  PubMed  Google Scholar 

  16. Da Cunha-Filho TI, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ (2002) Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil 83:1258–1265

    Article  Google Scholar 

  17. Mulroy SJ, Klassen T, Gronley JK, Eberly VJ, Brown DA, Sullivan KJ (2010) Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study. Phys Ther 90(2):209–223

    Article  PubMed  Google Scholar 

  18. Calabrò RS, De Cola MC, Leo A, Reitano S, Balletta T, Trombetta G, Naro A, Russo M, Bertè F, De Luca R, Bramanti P (2015) Robotic neurorehabilitation in patients with chronic stroke: psychological well-being beyond motor improvement. Int J Rehabil Res 38(3):219–225

    Article  PubMed  Google Scholar 

  19. Hidler J, Wisman W, Neckel N (2008) Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomechanics 23(10):1251–1259

    Article  Google Scholar 

  20. Jezernik S, Colombo G, Keller T, Frueh H, Morari M (2003) Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation 6(2):108–115

    Article  PubMed  Google Scholar 

  21. Veneman J, Menger J, van Asseldonk E, van der Helm F, van der Kooij H (2008) Fixating the pelvis in the horizontal plane affects gait characteristics. Gait Posture 28:157–163

    Article  PubMed  Google Scholar 

  22. Hidler JM, Wall AE (2005) Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 20(2):184–193

    Article  Google Scholar 

  23. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H (2007) Design and evaluation of the Lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386

    Article  PubMed  Google Scholar 

  24. Hesse S, Uhlenbrock D (2000) A mechanized gait trainer for restoration of gait. J Rehabil Res Dev 37(6):701–708

    CAS  PubMed  Google Scholar 

  25. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D (2008) Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 22:625–632

    Article  PubMed  Google Scholar 

  26. Wall A, Borg J, Palmcrantz S (2015) Clinical application of the hybrid assistive limb (HAL) for gait training—a systematic review. Front Syst Neurosci. 25(9):48

    Google Scholar 

  27. Hussain S, Xie SQ, Jamwal PK, Parsons J (2012) An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys 34:1448–1453

    Article  PubMed  Google Scholar 

  28. Stegall P, Winfree K, Zanotto D, Agrawal SK (2013) Rehabilitation exoskeleton design: exploring the effect of the anterior lunge degree of freedom. IEEE T Robot 29(4):838–846

    Article  Google Scholar 

  29. Duschau-Wicke A, Caprez A, Riener R (2010) Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil 7(1)

  30. Morone G, Iosa M, Bragoni M, De Angelis D, Venturiero V, Coiro P, Riso R, Pratesi L, Paolucci S (2012) Who may have durable benefit from robotic gait training?: a 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke 43(4):1140–1142

    Article  PubMed  Google Scholar 

  31. van Nunen MP, Gerrits KH, Konijnenbelt M, Janssen TW, de Haan A (2015) Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol 10(2):141–148

    Article  PubMed  Google Scholar 

  32. Hidler JM, Carroll M, Federovich EH (2007) Strength and coordination in the paretic leg of individuals following acute stroke. IEEE Trans Neural Syst Rehabil Eng 15(4):526–534

    Article  PubMed  Google Scholar 

  33. Husemann B, Müller F, Krewer C, Heller S, Koenig E (2007) Effects of locomotion training with assistance of a driven gait orthosis in hemiparetic patients after stroke. Stroke 38(2):349–354

    Article  PubMed  Google Scholar 

  34. Swinnen E, Beckwée D, Meeusen R, Baeyens JP, Kerckhofs E (2014) Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Top Stroke Rehabil 21(2):87–100

    Article  PubMed  Google Scholar 

  35. Mehrholz J, Pohl M, Elsner B (2014) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 1:CD002840

    PubMed  Google Scholar 

  36. Uçar DE, Paker N, Buğdaycı D (2014) Lokomat: a therapeutic chance for patients with chronic hemiplegia. NeuroRehabilitation 34:447–453

    PubMed  Google Scholar 

  37. Calabrò RS, Reitano S, Leo A, De Luca R, Melegari C, Bramanti P (2014) Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study. Funct Neurol 29(2):139–141

    PubMed  PubMed Central  Google Scholar 

  38. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG (2009) Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 23(1):5–13

    Article  PubMed  Google Scholar 

  39. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR (2008) Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 39(6):1786–1792

    Article  PubMed  Google Scholar 

  40. Kelley CP, Childress J, Boake C, Noser EA (2013) Over-ground and robotic-assisted locomotor training in adults with chronic stroke: a blinded randomized clinical trial. Disabil Rehabil Assist Technol 8(2):161–168

    Article  PubMed  Google Scholar 

  41. Moreh E, Meiner Z, Neeb M, Hiller N, Schwartz I (2009) Spinal decompression sickness presenting as partial Brown-Sequard syndrome and treated with robotic-assisted body-weight support treadmill training. J Rehabil Med 41(1):88–89

    Article  PubMed  Google Scholar 

  42. Ustinova K, Chernikova L, Bilimenko A, Telenkov A, Epstein N (2011) Effect of robotic locomotor training in an individual with Parkinson’s disease: a case report. Disabil Rehabil Assist Technol 6(1):77–85

    Article  PubMed  Google Scholar 

  43. Calabrò RS, De Luca R, Leo A, Balletta T, Marra A, Bramanti P (2015) Lokomat training in vascular dementia: motor improvement and beyond! Aging Clin Exp Res. doi:10.1007/40520-015-0343-2

    Google Scholar 

  44. Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, Berweck S, Heinen F, Meyer-Heim A (2010) Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol 14(6):496–502

    Article  PubMed  Google Scholar 

  45. Lo AC, Chang VC, Gianfrancesco MA, Friedman JH, Patterson TS, Benedicto DF (2010) Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil 7:51

    Article  PubMed  PubMed Central  Google Scholar 

  46. Carda S, Invernizzi M, Baricich A, Comi C, Croquelois A, Cisari C (2012) Robotic gait training is not superior to conventional treadmill training in parkinson disease: a single-blind randomized controlled trial. Neurorehabil Neural Repair 26(9):1027–1034

    Article  PubMed  Google Scholar 

  47. Nardo A, Anasetti F, Servello D, Porta M (2014) Quantitative gait analysis in patients with Parkinson treated with deep brain stimulation: the effects of a robotic gait training. Neuro Rehabil 35(4):779–788

    Google Scholar 

  48. Schwartz I, Sajin A, Moreh E, Fisher I, Neeb M, Forest A, Vaknin-Dembinsky A, Karusis D, Meiner Z (2012) Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult Scler 18(6):881–890

    Article  PubMed  Google Scholar 

  49. Straudi S, Benedetti MG, Venturini E, Manca M, Foti C, Basaglia N (2013) Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. Neuro Rehabil 33:555–563

    CAS  Google Scholar 

  50. Gandolfi M, Geroin C, Picelli A, Munari D, Waldner A, Tamburin S, Marchioretto F, Smania N (2008) Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci 8:318

    Google Scholar 

  51. Lo AC, Triche EW (2008) Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 22:661–671

    Article  PubMed  Google Scholar 

  52. Vaney C, Gattlen B, Lugon-Moulin V, Meichtry A, Hausammann R, Foinant D, Anchisi-Bellwald AM, Palaci C, Hilfiker R (2012) Robotic-assisted step training (lokomat) not superior to equal intensity of overground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair 26:212–221

    Article  PubMed  Google Scholar 

  53. Domingo A, Lam T (2014) Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil 11:167

    Article  PubMed  PubMed Central  Google Scholar 

  54. Van Kammen K, Boonstra A, Reinders-Messelink H, den Otter R (2014) The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking. PLoS ONE 9(9):e107323

    Article  PubMed  PubMed Central  Google Scholar 

  55. Krewer C, Müller F, Husemann B, Heller S, Quintern J, Koenig E (2007) The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects. Gait Posture 26(3):372–377

    Article  PubMed  Google Scholar 

  56. Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG (2009) Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther 89(8):829–839

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mat Dzahir MA, Yamamoto SI (2014) Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers. Robotics 3:120–148

    Article  Google Scholar 

  58. Fisher S (2008) Use of autoambulator for mobility improvement in patients with central nervous system (CNS) injury or disease. Neurorehabil Neural Repair 22:556

    Google Scholar 

  59. Fisher S, Lucas L, Thrasher TA (2011) Robot-assisted gait training for patients with hemiparesis due to stroke. Top Stroke Rehabil 18(3):269–276

    Article  PubMed  Google Scholar 

  60. Mantone J (2006) Getting a leg up? Rehab patients get an assist from devices such as HealthSouth’s AutoAmbulator, but the robots’ clinical benefits are still in doubt. Mod Healthc 36(7):58–60

    PubMed  Google Scholar 

  61. https://www.utwente.nl/ctw/bw/research/projects/MINDWALKER. Accessed 4 January 2016

  62. https://www.symbitron.eu/. Accessed 4 January 2016

  63. Tufekciler N, van Asseldonk EH, van der Kooij H (2011) Velocity-dependent reference trajectory generation for the LOPES gait training robot. IEEE Int Conf Rehabil Robot 2011:5975414

    CAS  PubMed  Google Scholar 

  64. Koopman B, van Asseldonk EH, van der Kooij H (2013) Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil 10:3

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS (2014) The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  66. Khanna I, Roy A, Rodgers MM, Krebs HI, Macko RM, Forrester LW (2010) Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  67. Agrawal SK, Banala SK, Fattah A, Sangwan V, Krishnamoorthy V, Scholz JP, Hsu WL (2007) Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng 15(3):410–20

  68. Banala SK, Agrawal SK, Kim SH, Scholz JP (2010) Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron 15(2):216–225

    Article  Google Scholar 

  69. Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8

    Article  PubMed  Google Scholar 

  70. Hussain S (2014) State-of-the-art robotic gait rehabilitation orthoses: design and control aspects. Neuro Rehabil 35:701–709

    Google Scholar 

  71. Hesse S, Sarkodie-Gyan T, Uhlenbrock D (1999) Development of an advanced mechanized gait trainer, controlling the movement of the center of mass, for restoring gait in non-ambulant subjects. Biomed Tech 44:194–201

    Article  CAS  Google Scholar 

  72. Dias D, Laíns J, Pereira A, Nunes R, Caldas J, Amaral C, Pires S, Costa A, Alves P, Moreira M, Garrido N, Loureiro L (2007) Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys 43(4):499–504

    CAS  PubMed  Google Scholar 

  73. Peurala SH, Tarkka IM, Pitkänen K, Sivenius J (2005) The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil 86(8):1557–1564

    Article  PubMed  Google Scholar 

  74. Hesse S, Werner C, Uhlenbrock D, von Frankenberg S, Bardeleben A, Brandl-Hesse B (2001) An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results. Neurorehabil Neural Repair 15(1):39–50

    Article  CAS  PubMed  Google Scholar 

  75. Hesse S, Werner C, Bardeleben A (2004) Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury. Spinal Cord 42(6):346–352

    Article  CAS  PubMed  Google Scholar 

  76. Manella KJ, Torres J, Field-Fote EC (2010) Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury. J Rehabil Med 42(8):795–798

    Article  PubMed  Google Scholar 

  77. Iosa M, Morone G, Bragoni M, De Angelis D, Venturiero V, Coiro P, Pratesi L, Paolucc S (2011) Driving electromechanically assisted Gait Trainer for people with stroke. J Rehabil Res Dev 48(2):135–146

    Article  PubMed  Google Scholar 

  78. Paleg G, Livingstone R (2015) Outcomes of gait trainer use in home and school settings for children with motor impairments: a systematic review. Clin Rehabil. doi:10.1177/0269215514565947

    PubMed  Google Scholar 

  79. Picelli A, Melotti C, Origano F, Neri R, Waldner A, Smania N (2013) Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disor 19(6):605–610

    Article  Google Scholar 

  80. Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, Smania N (2012) Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair 26(4):353–361

    Article  PubMed  Google Scholar 

  81. Picelli A, Melotti C, Origano F, Waldner A, Gimigliano R, Smania N (2012) Does robotic gait training improve balance in Parkinson’s disease? A randomized controlled trial. Parkinsonism Relat Disord 18(8):990–993

    Article  PubMed  Google Scholar 

  82. Hesse S, Waldner A, Tomelleri C (2010) Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stoller O, Schindelholz M, Bichsel L, Hunt KJ (2014) Cardiopulmonary responses to robotic end-effector-based walking and stair climbing. Med Eng Phys 36(4):425–431

    Article  PubMed  Google Scholar 

  84. Sale P, Franceschini M, Waldner A, Hesse S (2012) Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med 48(1):111–121

    CAS  PubMed  Google Scholar 

  85. Fineberg DB, Asselin P, Harel NY, Agranova-Breyter I, Kornfeld SD, Bauman WA, Spungen AM (2013) Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J Spinal Cord Med 36(4):313–321

    Article  PubMed  PubMed Central  Google Scholar 

  86. Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921

    Article  PubMed  Google Scholar 

  87. Nooijen CF, Ter Hoeve N, Field-Fote EC (2009) Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabi 6(6):36

    Article  Google Scholar 

  88. ClinicalTrials.gov [Internet]. Bethesda, MD: National Library of Medicine (US); 2000. Available from: http://clinicaltrials.gov/. Accessed 4 January 2016

  89. Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M (2015) HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil 12:68

    Article  PubMed  PubMed Central  Google Scholar 

  90. Weiss PL, Tirosh E, Fehlings D (2014) Role of virtual reality for cerebral palsy management. J Child Neurol 29(8):1119–1124

    Article  PubMed  Google Scholar 

  91. Imam B, Jarus T (2014) Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehab Res Pract 2014:594

    Google Scholar 

  92. Gamito P, Oliveira J, Coelho C, Morais D, Lopes P, Pacheco J, Brito R, Soares F, Santos N, Barata AF (2015) Cognitive training on stroke patients via virtual reality-based serious games. Disabil Rehabil 5:1–4

    Article  Google Scholar 

  93. Laver KE, George S, Thomas S, Deutsch JE, Crotty M (2015) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 12:2

    Google Scholar 

  94. Mirelman A, Patritti BL, Bonato P, Deutsch JE (2010) Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture. 31(4):433–437

    Article  PubMed  Google Scholar 

  95. Putrino D (2014) Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Curr Opin Neurol 27(6):631–636

    Article  PubMed  Google Scholar 

  96. Isaacson BM, Swanson TM, Pasquina PF (2013) The use of a computer-assisted rehabilitation environment (CAREN) for enhancing wounded warrior rehabilitation regimens. J Spinal Cord Med 36:296–299

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hak L, Houdijk H, van der Wurff P, Prins MR, Beek PJ, van Dieën JH (2015) Stride frequency and length adjustment in post-stroke individuals: influence on the margins of stability. J Rehabil Med 47:126–132

    Article  PubMed  Google Scholar 

  98. Sessoms PH, Gottshall KR, Collins JD, Markham AE, Service KA, Reini SA (2015) Improvements in gait speed and weight shift of persons with traumatic brain injury and vestibular dysfunction using a virtual reality computer-assisted rehabilitation environment. Mil Med 180:143–149

    Article  PubMed  Google Scholar 

  99. Villamar MF, Santos Portilla A, Fregni F, Zafonte R (2012) Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation 15(4):326–338

    Article  PubMed  Google Scholar 

  100. Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, Smania N (2015) Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. Restor Neurol Neurosci 33(3):357–368

    Article  PubMed  Google Scholar 

  101. Danzl MM, Chelette KC, Lee K, Lykins D, Sawaki L (2013) Brain stimulation paired with novel locomotor training with robotic gait orthosis in chronic stroke: a feasibility study. NeuroRehabilitation 33(1):67–76

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Salvatore Calabrò.

Ethics declarations

Conflict of interest

The authors state neither conflicts of interest nor financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabrò, R.S., Cacciola, A., Bertè, F. et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?. Neurol Sci 37, 503–514 (2016). https://doi.org/10.1007/s10072-016-2474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2474-4

Keywords

Navigation