Skip to main content
Log in

An eye-tracking controlled neuropsychological battery for cognitive assessment in neurological diseases

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Traditional cognitive assessment in neurological conditions involving physical disability is often prevented by the presence of verbal–motor impairment; to date, an extensive motor–verbal-free neuropsychological battery is not available for such purposes. We adapted a set of neuropsychological tests, assessing language, attentional abilities, executive functions and social cognition, for eye-tracking (ET) control, and explored its feasibility in a sample of healthy participants. Thirty healthy subjects performed a neuropsychological assessment, using an ET-based neuropsychological battery, together with standard “paper and pencil” cognitive measures for frontal (Frontal Assessment Battery—FAB) and working memory abilities (Digit Sequencing Task) and for global cognitive efficiency (Montreal Cognitive Assessment—MoCA). Psychological measures of anxiety (State-Trait Anxiety Inventory-Y—STAI-Y) and depression (Beck Depression Inventory—BDI) were also collected, and a usability questionnaire was administered. Significant correlations were observed between the “paper and pencil” screening of working memory abilities and the ET-based neuropsychological measures. The ET-based battery also correlated with the MoCA, while poor correlations were observed with the FAB. Usability aspects were found to be influenced by both working memory abilities and psychological components. The ET-based neuropsychological battery developed could provide an extensive assessment of cognitive functions, allowing participants to perform tasks independently from the integrity of motor or verbal channels. Further studies will be aimed at investigating validity and usability components in neurological populations with motor–verbal impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Connolly S, Galvin M, Hardiman O (2015) End-of-life management in patients with amyotrophic lateral sclerosis. Lancet Neurol 14:435–442. doi:10.1016/S1474-4422(14)70221-2

    Article  PubMed  Google Scholar 

  2. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH et al (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioral syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146. doi:10.1080/17482960802654364

    Article  PubMed  Google Scholar 

  3. Beeldman E, Raaphorst J, Klein Twennaar M, de Visser M, Schmand BA, de Haan RJ (2015) The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry 0:1–9. doi:10.1136/jnnp-2015-310734

    Google Scholar 

  4. Goldstein LH, Abrahams S (2013) Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol 12:368–380. doi:10.1016/S1474-4422(13)70026-7

    Article  PubMed  Google Scholar 

  5. Abrahams S, Newton J, Niven E, Foley J, Bak T (2014) Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener 15:9–14. doi:10.3109/21678421.2013.805784

    Article  PubMed  Google Scholar 

  6. Poletti B, Solca F, Carelli L, Madotto F, Lafronza A, Faini A et al (2016) The validation of the Italian Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener 24:1–10. doi:10.1080/21678421.2016.1183679

    Google Scholar 

  7. Käthner I, Kübler A, Halder S (2015) Comparison of eye tracking, electrooculography and an auditory braincomputer interface for binary communication: a case study with a participant in the locked-in state. J Neuroeng Rehabil 12:76. doi:10.1186/s12984-015-0071-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pasqualotto E, Matuz T, Federici S, Ruf CA, Bartl M, Olivetti Belardinelli M et al (2015) Usability and workload of access technology for people with severe motor impairment: a comparison of brain–computer interfacing and eye tracking. Neurorehabil Neural Repair 29(10):950–957. doi:10.1177/1545968315575611

    Article  PubMed  Google Scholar 

  9. Donaghy C, Pinnock R, Abrahams S, Cardwell C, Hardiman O, Patterson V et al (2009) Ocular fixation instabilities in motor neurone disease. A marker of frontal lobe dysfunction? J Neurol 256:420–426. doi:10.1007/s00415-009-0109-x

    Article  CAS  PubMed  Google Scholar 

  10. Gorges M, Müller HP, Lulé D, Del Tredici K, Brettschneider J, Keller J et al (2015) Eye movement deficits are consistent with a staging model of pTDP-43 pathology in amyotrophic lateral sclerosis. PLoS One 10(11):e0142546. doi:10.1371/journal.pone.0142546

    Article  PubMed  PubMed Central  Google Scholar 

  11. Veneri G, Pretegiani E, Fargnoli F, Rosini F, Vinciguerra C, Federighi P et al (2014) Spatial ranking strategy and enhanced peripheral vision discrimination optimize performance and efficiency of visual sequential search. Eur J Neurosci 40:2833–2841. doi:10.1111/ejn.12639

    Article  PubMed  Google Scholar 

  12. Hicks SL, Sharma R, Khan AN, Berna CM, Waldecker A, Talbot K et al (2013) An eye-tracking version of the trail-making test. PLoS One 8(12):e84061. doi:10.1371/journal.pone.0084061

    Article  PubMed  PubMed Central  Google Scholar 

  13. Proudfoot M, Menke RAL, Sharma R, Berna CM, Hicks SL, Kennard C et al (2015) Eye-tracking in amyotrophic lateral sclerosis: a longitudinal study of saccadic and cognitive tasks. Amyotroph Lateral Scler Frontotemporal Degener. 17(1–2):101–111. doi:10.3109/21678421.2015.1054292

    PubMed  PubMed Central  Google Scholar 

  14. Keller J, Gorges M, Horn HT, Aho-Özhan HEA, Pinkhardt EH, Uttner I et al (2015) Eye-tracking controlled cognitive function tests in patients with amyotrophic lateral sclerosis: a controlled proof-of-principle study. J Neurol 262:1918–1926. doi:10.1007/s00415-015-7795-3

    Article  CAS  PubMed  Google Scholar 

  15. Cipresso P, Carelli L, Solca F, Meazzi D, Meriggi P, Poletti B et al (2012) The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav 2(4):479–498. doi:10.1002/brb3.57

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cipresso P, Meriggi P, Carelli L, Solca F, Poletti B, Lulè D et al (2013) Cognitive assessment of executive functions using brain computer interface and eye-tracking. EAI Endors Trans Ambient Syst 4:e4. doi:10.4108/trans.amsys.01-06.2013.e4

    Article  Google Scholar 

  17. Poletti B, Carelli L, Solca F, Lafronza A, Pedroli E, Faini A, Zago S, Ticozzi N, Meriggi P, Cipresso P, Lulé D, Ludolph A, Riva G, Silani V (2016) Cognitive assessment in amyotrophic lateral sclerosis by means of P300-brain computer interface: a preliminary study. Amyotroph Lateral Scler and Frontotemporal Degener 12:1–9. doi:10.1080/21678421.2016.1181182

    Google Scholar 

  18. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB. A frontal assessment battery at bedside. Neurology 55:1621–1626. doi:10.1212/WNL.55.11.1621

    Article  CAS  PubMed  Google Scholar 

  19. Pirani A, Nasreddine ZS, Tulipani C, Neri M (2007) Montreal Cognitive Assessment (MOCA): uno strumento rapido per lo screening del Mild Cognitive Impairment. Dati preliminari della versione italiana. Atti IV Congresso Regionale Associazione Italiana Psicogeriatria, Bologna

    Google Scholar 

  20. D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 3(66):115–142. doi:10.1146/annurev-psych-010814-015031

    Article  Google Scholar 

  21. Anselmetti S, Poletti S, Ermoli E, Bechi M, Cappa S, Venneri A et al (2008) The Brief Assessment of Cognition in Schizophrenia. Normative data for the Italian population. Neurological Sciences 29(2):85–92. doi:10.1007/s10072-008-0866-9

    Article  PubMed  Google Scholar 

  22. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    Article  CAS  PubMed  Google Scholar 

  23. Spielberger CD, Gorsuch RL, Lushene R (2007) The State Trait Anxiety Inventory (STAI). Test Manual for Form X. Palo Alto: Consulting Psychologist Press (trad. Italiana a cura di Lazzari R. E Pancheri P., “S.T.A.I. Questionario di autovalutazione dell’ansia di stato e di tratto”. Organizzazioni Speciali, Firenze, 1980)

  24. Novelli G, Papagno C, Capitani E, Laiacona N, Vallar G, Cappa SF (1986) Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Archivio di Psicologia, Neurologia e Psichiatria 47(4):477–506

    Google Scholar 

  25. De Renzi E, Vignolo LA (1962) The Token Test: a sensitive test to detect receptive disturbances in aphasics. Brain 85:556–678. doi:10.1093/brain/85.4.665

    Article  Google Scholar 

  26. Brickenkamp R, Zillmer E (1998) The d2 test of attention, 1st US edn. Hogrefe & Huber Publishers, Seattle

    Google Scholar 

  27. Raven JC (1948) The comparative assessment of intellectual ability. Br J Psychol 39:12–19. doi:10.1111/j.2044-8295.1948.tb00198.x

    Google Scholar 

  28. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2004) Modified card sorting test: normative data. J Clin Exp Neuropsychol 26(2):246–250

    Article  PubMed  Google Scholar 

  29. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (2001) The ‘‘Reading the Mind in the Eyes’’ Test revised version: a study with normal adults, and adults with asperger syndrome or high-functioning autism. J Child Psychol Psychiat 42(2):241–251. doi:10.1111/1469-7610.00715

    Article  CAS  PubMed  Google Scholar 

  30. Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123(11):2189–2202. doi:10.1093/brain/123.11.2189

    Article  PubMed  Google Scholar 

  31. Stansfield RB, Preston S, Bechara A (2003) Normative gambling task data: analysis summary. Normative gambling task data: analysis summary. University of Iowa, Iowa. (Unpublished manuscript)

    Google Scholar 

  32. Riccio A, Simione L, Schettini F, Pizzimenti A, Inghilleri M, Belardinelli MO et al (2013) Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Front Hum Neurosci 12(7):732. doi:10.3389/fnhum.2013.00732

    Google Scholar 

  33. Shao R, Zhang H, Lee TMC (2015) The neural basis of social risky decision making in females with major depressive disorder. Neuropsychologia 67:100–110. doi:10.1016/j.neuropsychologia.2014.12.009

    Article  PubMed  Google Scholar 

  34. Fales CL, Barch DM, Rundle MM, Mintun MA, Snyder AZ, Cohen JD, Mathews J, Sheline YI (2008) Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol Psychiatry 63(4):377–384. doi:10.1016/j.biopsych.2007.06.012

    Article  PubMed  Google Scholar 

  35. Zahavi AY, Sabbagh MA, Washburn D, Mazurka R, Bagby M, Strauss J, Kennedy JL, Ravindran A, Harkness KL (2016) Serotonin and dopamine gene variation and theory of mind decoding accuracy in major depression: a preliminary investigation. PLoS One 11–3:e0150872. doi:10.1371/journal.pone.0150872

    Article  Google Scholar 

  36. Nijboer F, Birbaumer N, Kübler A (2010) The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis—a longitudinal study. Front Neurosci 4:55. doi:10.3389/fnins.2010.00055

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to persons who voluntarily participated at the research, by completing the designed protocol. The presented work was partly funded by the “eBrain: BCI and ET for ALS” Lombardy Region project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Poletti.

Ethics declarations

Funding

This study was partly funded by the “eBrain: BCI and ET for ALS” Lombardy Region project (Grant Number: 16971/SAL52).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

B. Poletti and L. Carelli contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletti, B., Carelli, L., Solca, F. et al. An eye-tracking controlled neuropsychological battery for cognitive assessment in neurological diseases. Neurol Sci 38, 595–603 (2017). https://doi.org/10.1007/s10072-016-2807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2807-3

Keywords

Navigation