Skip to main content
Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases 6/2014

Open Access 01.06.2014 | Review

Pneumococcal empyema and complicated pneumonias: global trends in incidence, prevalence, and serotype epidemiology

verfasst von: M. A. Fletcher, H.-J. Schmitt, M. Syrochkina, G. Sylvester

Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases | Ausgabe 6/2014

Abstract

This review evaluates the serotype epidemiology of complicated pneumococcal pneumonia (CPP) during the period 1990–2012. PubMed and EMBASE were searched using the terms “empyema”, “complicated pneumonia”, “pleural infection”, “necrotizing pneumonia”, “pleural effusion”, “parapneumonic effusion”, “pneumatocele”, or “lung abscess”; “pneumococcal” or “Streptococcus pneumoniae”; and “serotype” for studies on the epidemiology of complicated pneumonias published from January 1, 1990 to October 1, 2013. Studies with data on incidence and serotypes were included; reviews, case reports, and conference abstracts were excluded. Of 152 papers, 84 fitted the inclusion criteria. A few pneumococcal serotypes were predominant causes of CPP, particularly serotypes 1, 19A, 3, 14, and 7F. CPP was a more common manifestation of pneumococcal disease among older (>2 years old) than younger children. The data support increases in both reported incidence rates and proportions of CPP in children and adults during the period 1990–2012; specific increases varied by geographic region. The proportions of serotype 3 and, particularly in Asia, serotype 19A CPP have increased, whereas most studies show declines in serotype 14. Serotype 1 has been a predominant cause of CPP since 1990, while antibiotic resistance was infrequent among serotype 1 isolates. The reported incidence and proportions of CPP among pneumonia cases steadily increased from 1990 to 2012. Several factors might account for these increases, including enhanced disease detection due to a higher index of suspicion, more sophisticated diagnostic assays, and changes in the prevalence of serotypes with capacity to invade the pleural space that were not targeted by the 7-valent pneumococcal conjugate vaccine (PCV7).

Introduction

Streptococcus pneumoniae is the most common cause of pneumonia in children and a major cause of pneumonia in adults worldwide [1, 2]. Among patients with pneumonia, as many as half may develop pleural effusions (i.e., fluid in the pleural space); of these, 5–10 % may progress to empyema [3]. In general, “complicated pneumonia” refers to pneumonia accompanied by pleural effusion. Empyema is a serious complication characterized by pus and bacteria in the pleural space [3, 4], which may progress to necrosis, cavitation, or fistulas in the thoracic cavity. S. pneumoniae is the most common cause of complicated pneumonia in children and a common cause in adults [5, 6]. Other bacteria associated with acute complicated pneumonias include S. pyogenes, S. milleri, Staphylococcus aureus, Haemophilus influenzae, Mycoplasma pneumoniae, Pseudomonas aeruginosa, other Streptococcus species, and, less commonly, Klebsiella, Enterobacter, Proteus, Salmonella, and Yersinia species [5].
The reported incidence and proportion of cases of complicated pneumococcal pneumonia (CPP) in children and adults have increased in recent decades [719]. This trend has been described both before and after the introduction in 2000 of the 7-valent pneumococcal conjugate vaccine (PCV7; serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F conjugated to CRM197) for pediatric vaccination. A 23-valent pneumococcal polysaccharide vaccine (PPV23) containing pneumococcal capsular polysaccharides (serotypes 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F) was introduced in 1983 for the vaccination of children and adolescents at high risk of pneumococcal disease, but primarily older adults. Unlike the pneumococcal conjugate vaccines, PPV23 is not approved for children aged <2 years. PPV23 in adults has been shown to have an impact on bacteremic pneumococcal pneumonia, but not all-cause pneumonia [20, 21]. More recently, the 10-valent pneumococcal conjugate vaccine (PCV10; serotypes 1, 4, 5, 6B, 7F, 9V, 14, and 23F conjugated to non-typeable H. influenza protein D, serotype 18C conjugated to tetanus toxoid, and serotype 19F conjugated to diphtheria toxoid) and the 13-valent pneumococcal conjugate vaccine (PCV13; serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F conjugated to CRM197) were introduced beginning in 2009 (Table 1).
Table 1
Pediatric pneumococcal conjugate vaccine approval history for the countries included in this review (Pfizer, data on file)
Country
Vaccine
Start of the immunization programa
North America
Canada
PCV7
2001b
PCV13
2010
USA
PCV7
2000
PCV13
2010
South America
Mexico
PCV7
2007
PCV13
2010
Uruguay
PCV7
2008
PCV13
2010
Europe
France
PCV7
2006
PCV13
2010
Germany
PCV7
2006c
PCV10
2009c
PCV13
2009c
Italy
PCV7
2005–2007b
PCV13
2010
Portugal
PCV7
2006d
PCV13
2009
Spain
PCV7
2002–2006d
2006–2009b
PCV13
2010b
Turkey
PCV7
2008
PCV13
2011
UK
PCV7
2006
PCV13
2010
Middle East/North Africa
Israel
PCV7
2009
PCV13
2010e
Asia-Pacific
Australia
PCV7
2001f
PCV13
2010
China
PCV7
2008g
PCV13
No
India
PCV7
2010d
PCV13
2012d
Philippines
PCV7
No
PCV10
2012
PCV13
2013
Singapore
PCV7
No
PCV13
2011
South Korea
PCV7
2003d
PCV13
2010d
Taiwan
PCV7
2005d
PCV13
2011d
Vietnam
PCV7
No
PCV13
No
PCV7, 7-valent pneumococcal conjugate vaccine; PCV10, 10-valent pneumococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine
aDates refer to a national immunization program, unless otherwise specified
bYear of introduction into immunization programs varied by province
cPhysician choice program
dPrivate market only
eSwitched to PCV13 in November 2010
fIncluded in the national immunization program in 2005
gRegional (city) mass vaccination programs
A limited number of pneumococcal serotypes have been associated with CPP and pneumococcal empyema (PnEmp). Changes in the serotype epidemiology of invasive pneumococcal disease (IPD) and pneumococcal pneumonia have been reported in recent years, with significant declines in incidence and in the proportion of disease caused by PCV7 serotypes and increases in the proportion of non-PCV7 serotype disease [2227]. Although these changes are suggestive of serotype replacement, similar trends have also been reported in some countries prior to the introduction of PCV7 [28, 29, 68].
The purpose of this review is to evaluate the serotype epidemiology of CPP during the period 1990–2012.

Methods

PubMed and EMBASE were searched for studies on the epidemiology and incidence of CPP published from January 1, 1990 through October 1, 2013 using the terms: “empyema”, “complicated pneumonia”, “pleural infection”, “necrotizing pneumonia”, “pleural effusion”, “parapneumonic effusion”, “pneumatocele”, or “lung abscess”; “pneumococcal” or “Streptococcus pneumoniae”; and “serotype”. Studies with data on incidence, prevalence (i.e., proportion of cases), or serotypes were included; reviews, case reports, and conference abstracts were excluded. In addition, the references sections of relevant review articles were checked for studies not identified during the online search.
The base population used for analyses varied by study. For example, among studies of incidence or proportion of complicated pneumonias or empyema, the base populations included: hospitalized patients [13] or hospitalized patients with community-acquired pneumonia (CAP) [19, 3032]; pneumococcal pneumonia [9, 16, 3240]; IPD [10, 12, 17, 18, 4149]; complicated pneumonia [7, 13, 5054]; complicated pneumonia with positive cultures [14]; CPP [55]; empyema [5661]; or empyema with fistula [62].
Some studies described the clinical methodologies used to identify pleural effusion or empyema prior to microbiological identification. Retrospective studies used: diagnostic coding [16, 19, 30, 31, 35, 52, 61]; records of chest radiographs [9, 33, 48, 50]; computed tomography (CT) [7, 9, 34, 50]; ultrasound [7, 34, 50, 56]; microbiologic culture records [13]; or results at surgery [56]. One study reviewed “pleural effusion data”, although no other details were specified [48]. Prospective studies used: thoracocentesis [39, 51, 53, 54]; CT, ultrasound, or chest radiograph plus clinical signs [58]; CT, ultrasound, or chest radiograph [32]; or physical examination and chest radiograph [37, 60, 63]. One study did not specify the diagnostic methodology [49].
Studies varied in the methodologies used to isolate S. pneumoniae, including: culture of samples from the pleural cavity [7, 13, 4951, 54, 58, 62, 6466], blood [32, 6871], blood and pleural cavity [9, 10, 14, 15, 17, 18, 30, 31, 3436, 38, 4148, 52, 53, 56, 57, 63, 7290], or unspecified sites [33, 40, 91]; and, more recently, investigators used polymerase chain reaction (PCR) or real-time PCR to identify pneumococcal-specific genes (e.g., ply, LytA, rpoB, or wzg [cpsA]) in samples from the pleural cavity [43, 46, 49, 51, 5355, 58, 60, 64, 67, 87, 88, 90, 9294], blood [15, 32, 37, 75, 95], blood and pleural cavity [88], or nasopharyngeal aspirate [96]. A few studies applied immunochromatographic pneumococcal antigen detection (Binax NOW®) from blood or urine [15, 38, 51, 74, 77, 84].
Pneumococcal serotypes in blood or pleural fluid were identified with the Quellung reaction (also referred to as capsular swelling) [7, 12, 14, 15, 17, 18, 30, 31, 3438, 40, 4249, 56, 68, 69, 71, 73, 77, 82, 8588, 9093], dot blot [47, 71, 93], slide or latex agglutination [810, 40, 63, 65, 70, 72, 77, 80, 81, 83, 84, 97, 98], enzyme-linked immunoassays [55, 99], real-time PCR [32, 37, 43, 44, 46, 49, 51, 64, 65, 87, 88, 90, 93, 95], or multiplex PCR [54, 58, 60, 67, 74, 84, 92, 94, 97]. The Quellung reaction may include up to all the known serotypes, whereas PCR is typically more limited in the serotypes that can be identified. Some studies used more than one methodology (e.g., initial serotyping of cultured isolates, followed by PCR in culture-negative samples) [37, 65, 87, 88, 93, 94].
Definitions of penicillin susceptibility varied; some studies used breakpoints established by the Clinical and Laboratory Standards Institute (CLSI) in 2009 [53, 74, 83, 88, 90, 100], whereas others used pre-2009 breakpoints [7, 9, 15, 17, 30, 34, 63, 73].

Results

A total of 152 papers were initially identified; 68 were excluded because there were no data on incidence or serotypes, or they were case reports; consequently, 84 were included in this analysis.
Table 2 presents data on the incidence and proportion of CPP [7, 9, 10, 1214, 1619, 3047, 4962]. Trends and age-related differences in the studies are discussed below.
Table 2
Proportions of cases and incidence rates of complicated pneumococcal pneumonia (CPP)
Years [ref]
Country/ages, status
Methodology
Complicated pneumonia-specific outcome (i.e., cases with CPP)
Clinical presentation in patient population (i.e., cases in the patient population)
Proportion of cases
IR (cases of complicated pneumonia-specific outcome/100,000 population-years)
Time periods or subgroups
%
(n a/N b)
Time periods or subgroups
IR
A. Children
North America
Last year of surveillance: 1999
1993–1999 [30]
USA/<19 years, hospitalized
Retrospective, single, tertiary care hospital database, Utah
Empyema
CAP
1993–1999
28.3 %
(153/540)
1994
1
     
1994
13 %
(n/a)
1999
5c
     
1997
41 %
(n/a)
  
Last year of surveillance: 2000
1993–2000 [34]
USA/0–26 years, hospitalized
Retrospective, participants in 8 children’s hospitals
CPP
Pneumococcal pneumonia
0–26 years
36.1 %
(133/368)
 
n/a
     
0–12 months
26.4 %
(19/72)
  
     
13–24 months
28.6 %
(22/77)
  
     
25–36 months
28.1 %
(16/57)
  
     
37–48 months
29.0 %
(11/38)
  
     
49–60 months
50.0 %
(9/18)
  
     
≥61 months
53.0 %
(56/106)
  
Last year of surveillance: 2001
1996–2001 [7]
USA/4 months to 16.5 years, hospitalized
Retrospective, single hospital database, Tennessee
S. pneumoniae-positive complicated parapneumonic effusions
Complicated parapneumonic effusions
1996–2001
40.8 %
(31/76)
 
n/a
Last year of surveillance: 2003
1996–2003 [10]
USA/<18 years, hospitalized
Retrospective, regional medical database, Utah
S. pneumoniae-positive parapneumonic empyema
IPD
1996–2003
22 %
(52/234)
1996–2000
10.3
     
1997–2000
16 %
(21/129)
n/a
n/a
     
2001–2003
30 %c
(31/105)
2001–2003
14.3c
2000–2003 [56]
Canada/<18 years, hospitalized
Retrospective, university hospital databases (8 hospitals across Canada)
S. pneumoniae-positive empyema
Empyema
2000–2003
15.1 %
(38/251)
 
n/a
Last year of surveillance: 2006
1997–2006 [35]
USA/<18 years, hospitalized
Retrospective, single, tertiary care hospital database, Utah
S. pneumoniae-positive necrotizing pneumonia
Pneumococcal pneumonia
1997–2006
26.6 %
(33/124)
 
n/a
     
1997–2000
12.8 %
(5/39)
  
     
2001–2006
32.9 %
(28/85)
  
Last year of surveillance: 2007
1996–1999 and 2001–2007 [16]
USA/<2 years, hospitalized
Retrospective, national inpatient database
S. pneumoniae-positive empyema
Pneumococcal pneumonia
1996–1999 and 2001–2007
7.92 %
 
1996–1998
1.1
        
2005–2007
1.3
 
2–4 years, hospitalized
   
1996–1999 and 2001–2007
16.87 %
 
1996–1998
1.1
        
2005–2007
2.5
2001–2007 [31]
USA/<18 years, hospitalized
Retrospective, single, tertiary care hospital database (incidence based on overall pediatric hospitalization rate in Intermountain Healthcare hospitals in Utah)
Empyema
Pneumonia
2001
2002
2003
2004
2005
2006
2007
24.8 %
24.0 %
27.7 %
28.0 %
34.8 %
31.1 %
35.5 %
(62/250)
(64/267)
(75/271)
(74/264)
(88/253)
(75/241)
(104/293)
2001
2002
2003
2004
2005
2006
2007
8.5
8.6
9.9
9.6
11.1
9.3
12.5
1997–2007 [50]
Canada/≤17 years, hospitalized
Retrospective, single hospital database, Alberta
S. pneumoniae-positive complicated pneumonia
Complicated pneumonia
1997–2002
2002–2007
20.6 %
26.5 %
(7/34)
(18/68)
 
n/a
Last year of surveillance: 2010
1997–2010 [18]
USA/<18 years, hospitalized
Retrospective, regional medical database, Utah
CPP
IPD
1997–2000
2001–2010
17.2 %
33.0 %
(22/128)
(127/385)
 
n/a
Central/South America
2005–2010 [45]
Mexico/1 month to 16 years, hospitalized
Prospective, single hospital (Tijuana) active surveillance
S. pneumoniae-positive empyema
IPD
2005–2010
46.4 %
(13/28)
 
n/a
Last year of surveillance: 2008
2003–2008 [36]
Brazil/<15 years, hospitalized
Retrospective, single hospital database
S. pneumoniae-positive pleural fluid
Pneumococcal pneumonia
 
29.9 %
(32/107)
 
n/a
Europe
Last year of surveillance: 2003
1997–2003 [55]
UK/<17 years, hospitalized
Retrospective and prospective, single tertiary care center
S. pneumoniae-positive cavitatory disease
Empyema or parapneumonic effusion
 
16.0 %
(12/75)
 
n/a
Last year of surveillance: 2006
1990–2006 [57]
UK/<15 years, hospitalized
Retrospective, single hospital database, Scotland
S. pneumoniae-positive empyema
Empyema
 
14.3 %
(4/28)
 
n/a
1997–2006 [12]
Spain/<2 years, hospitalized
Prospective, regional children’s hospital
S. pneumoniae-positive pneumonia with empyema
IPD
1997–2001
2002–2006
6.9 %
17.9 %
(2/29)
(12/67)
1997–2001
2002–2006
2.2
9.2
 
2–4 years, hospitalized
   
1997–2001
2002–2006
13.3 %
34.8 %
(2/15)
(16/46)
1997–2001
2002–2006
1.5
9.2c
 
5–17 years, hospitalized
   
1997–2001
2002–2006
1.4 %
33.3 %
(3/14)
(9/27)
1997–2001
2002–2006
0.5
1.3
Last year of surveillance: 2008
2006–2008 [42]
Portugal/<18 years, hospitalized
Retrospective, laboratory-based surveillance system; S. pneumoniae isolates from IPD
Isolates from pleural fluid
IPD
 
3.1 %
(11/353)
 
n/a
Last year of surveillance: 2009
2007–2009 [32]
Italy/0–16 years, hospitalized
Prospective, observational, nationwide
Complicated pneumococcal pneumonia (RT-PCR-positive for S. pneumoniae)
CAP
CPP
Parapneumonic effusion
Parapneumonic effusion with empyema
Necrotizing pneumonia
Atelectasia
4.8 %
4.6 %
2.5 %
0.4 %
0.1 %
(36/753)
(35/753)
(19/753)
(3/753)
(1/753)
 
n/a
   
Complicated pneumococcal pneumonia (RT-PCR-positive for S. pneumoniae)
S. pneumoniae-positive CAP
CPP
Parapneumonic effusion
Parapneumonic effusion with empyema
Necrotizing pneumonia
Atelectasia
45.0 %
43.7 %
23.7 %
3.7 %
1.2 %
(36/80)
(35/80)
(19/80)
(3/80)
(1/80)
 
n/a
2006–2009 [51]
Spain/children, hospitalized
Prospective, single tertiary care center, children with parapneumonic effusion requiring thoracocentesis
S. pneumoniae-positive parapneumonic effusion
Parapneumonic effusion
 
50.9 %
(28/55)
 
n/a
2007–2009 [43]
Spain/<15 years, hospitalized
Prospective, hospital-based surveillance, regional (Madrid)
S. pneumoniae-positive parapneumonic empyema
IPD
 
30.3 %
(100/330)
 
n/a
2007–2009 [44]
Spain/3–59 months, hospitalized
Prospective, 2 hospitals
S. pneumoniae-positive pneumonia with empyema
IPD
 
65.4 %
(189/293)
 
n/a
2000–2009 [52]
France/0–18 years, hospitalized
Retrospective, regional medical database, Limousin
S. pneumoniae-positive pleural effusion, empyema, or pulmonary infection
Pleural effusion, empyema, or pulmonary infection
2000–2006
2006–2009
33.3 %
46.2 %
(3/9)
(12/26)
 
n/a
2002–2009 [62]
UK/<17 years, hospitalized
Retrospective, single hospital database
S. pneumoniae-positive fistulas
Empyema with fistula
 
14.2 %
(44/310)
 
n/a
Last year of surveillance: 2011
2010–2011 [60]
Turkey/0–18 years, hospitalized
Prospective, nationwide, active surveillance
S. pneumoniae-positive pneumonia with empyema
Pneumonia with empyema
 
34.0 %
(53/156)
 
n/a
2008–2011 [37]
Italy/≤5 years, hospitalized
Prospective, 5 regional hospitals
CPP, pleural effusion, empyema, necrotizing pneumonia, or atelectasia
Pneumococcal CAP
CPP
Pleural effusion
Empyema
Necrotizing pneumonia
Atelectasia
26.0 %
21.9 %
5.5 %
0 %
5.5 %
(19/73)
(16/73)
(4/73)
(0/73)
(4/73)
 
n/a
2007–2011 [46]
Spain/<15 years, hospitalized
Prospective, regional (Madrid) active clinical surveillance
Parapneumonic pneumococcal empyema
IPD
2007–2011
34.0 %
(209/614)
  
     
2007–2008
30.7 %
(50/163)
2007–2008
5.26
     
2008–2009
29.9 %
(50/167)
2008–2009
5.13
     
2009–2010
39.6 %
(67/169)
2009–2010
6.73d
     
2010–2011
36.5 %
(42/115)
2010–2011
4.14
   
Parapneumonic pneumococcal empyema (PCV13 serotypes)
IPD (PCV13 serotypes)
2007–2008
31.2 %
(39/125)
2007–2008
4.10
     
2008–2009
33.6 %
(45/134)
2008–2009
4.62
     
2009–2010
40.7 %
(55/135)
2009–2010
5.52d
     
2010–2011
40.4 %
(36/89)
2010–2011
3.55
Last year of surveillance: 2012
2007–2010, 2011–2012 [49]
Spain/<12 months, hospitalized
Prospective, regional (Madrid) active clinical surveillance
S. pneumoniae-positive parapneumonic pneumococcal empyema (any serotype)
IPD
2007–2010
2011–2012
3.7 %
5.0 %
(4/107)
(1/20)
2007–2010
2011–2012
1.78
1.36
 
≥12–24 months, hospitalized
   
2011–2012
2007–2010
33.7 %
18.2 %
(30/89)
(2/11)
2007–2010
2011–2012
13.57
2.66e
 
≥24 to <60 months, hospitalized
   
2007–2010
2011–2012
47.6 %
67.9 %
(90/189)
(19/28)
2007–2010
2011–2012
13.81
8.55
 
≥60 months to 15 years, hospitalized
   
2007–2010
2011–2012
37.7 %
50.0 %
(43/114)
(10/20)
2007–2010
2011–2012
2.36
1.53
 
<15 years, hospitalized
   
2007–2010
2011–2012
33.5 %
40.5 %
(167/499)
(32/79)
2007–2010
2011–2012
5.72
3.12f
Middle East/North Africa
Last year of surveillance: 1997
1986–1997 [33]
Israel/0–16 years, hospitalized
Retrospective, regional medical database
Pulmonary complications of pneumococcal pneumonia
Pneumococcal pneumonia
 
38.7 %
(43/111)
 
n/a
Last year of surveillance: 2002
1990–2002 [14]
Israel/0–18 years, hospitalized
Retrospective, primary/tertiary hospital database
S. pneumoniae-positive empyema
Empyema with positive cultures
 
45.8 %
(11/24)
 
n/a
Asia-Pacific
Last year of surveillance: 2003
1995–2003 [9]
Taiwan/<15 years, hospitalized
Retrospective, single hospital database
CPP
Pneumococcal pneumonia
1995
1996
1997
1998
1999
2000
2001
2002
25.0 %
25.0 %
42.9 %
57.1 %
50.0 %
71.4 %
61.5 %
70.0 %g
(1/4)
(1/4)
(3/7)
(4/7)
(6/12)
(10/14)
(8/13)
(7/10)
 
n/a
Last year of surveillance: 2004
1995–2004 [13]
China/<16 years, hospitalized
Retrospective, representative sample from tertiary care hospital
S. pneumoniae-positive empyema or pleural effusion
Empyema or pleural effusion
 
1.1 %
(5/461)
 
n/a
1995–2004 [13]
Korea/<16 years, hospitalized
Retrospective, representative sample from tertiary care hospital
S. pneumoniae-positive empyema or pleural effusion
Empyema or pleural effusion
 
6.7 %
(9/134)
 
n/a
1997–2004 [41]
Singapore/3 months to 19.5 years, hospitalized
Retrospective, single hospital database
S. pneumoniae-positive empyema
IPD
 
14.3 %
(21/147)
 
n/a
Last year of surveillance: 2005
1996–2005 [13]
Vietnam/<16 years, hospitalized
Retrospective, representative sample from tertiary care hospital
S. pneumoniae-positive empyema or pleural effusion
Empyema or pleural effusion
 
0.5 %
(3/665)
 
n/a
2000–2005 [13]
Taiwan/<16 years, hospitalized
Retrospective, representative sample from tertiary care hospital
S. pneumoniae-positive empyema or pleural effusion
Empyema or pleural effusion
 
55.5 %
(66/119)
 
n/a
Last year of surveillance: 2009
2008–2009 [53]
Taiwan/<18 years, hospitalized
Prospective, observational, limited enrollment (~100)
S. pneumoniae-positive empyema or parapneumonic pleural effusion
Empyema or parapneumonic pleural effusion
S. pneumoniae-positive empyema
S. pneumoniae-positive parapneumonic pleural effusion
27.3 %
0 %
(12/44)
(0/45)
 
n/a
2007–2009 [58]
Australia/<16 years, hospitalized
Prospective, nationwide empyema surveillance network
S. pneumoniae-positive empyema
Empyema
Blood culture
Pleural fluid culture
Pleural fluid PCR
12.5 %
7.5 %
51.0 %
(19/152)
(12/160)
(74/145)
 
n/a
2007–2009 [59]
Australia/<16 years, hospitalized
Prospective, nationwide empyema surveillance network
S. pneumoniae-positive empyema via PCR (lytA testing) of pleural fluid
Empyema
 
54.4 %
(43/79)
 
n/a
Last year of surveillance: 2010
1998–2010 [19]
Australia/0–19 years, hospitalized
Retrospective, national database
Empyema
Pneumonia
n/a
  
1998–2004
2005–2010
0.9
1.2h
 
<1 year
   
n/a
  
1998–2004
2.3
        
2005–2010
3.5
 
1–4 years
   
n/a
  
1998–2004
1.6
        
2005–2010
2.7h
 
5–9 years
   
n/a
  
1998–2004
0.5
        
2005–2010
0.5
 
10–14 years
   
n/a
  
1998–2004
0.4
        
2005–2010
0.5
 
15–19 years
   
n/a
  
1998–2004
0.9
        
2005–2010
0.8
2003–2010 [54]
Korea/children aged 29–124.5 months, hospitalized
Prospective, 2 hospitals (Seoul)
S. pneumoniae-positive empyema
Parapneumonic effusion
 
21.0 %
(13/62)
 
n/a
B. Adults
North America
Last year of surveillance: 2010
2000–2010 [40]
Texas, USA/adults, hospitalized
Retrospective, hospital, all cases with chest X-ray available
S. pneumoniae-positive necrotizing pneumonia
Pneumococcal pneumonia
Overall
6.6 %
(23/351)
 
n/a
     
PPV23 vaccinated
6.6 %
(10/151)
  
     
Not vaccinated
6.5 %
(13/200)
  
Europe
Last year of surveillance: 2002
1999–2002 [38]
Barcelona, Spain/>16 years, hospitalized
Prospective, single tertiary care hospital, all cases during study period
S. pneumoniae-positive pleural effusion or empyema
Pneumococcal CAP
Pleural effusion
15.2 %
(19/125)
 
n/a
     
Empyema
6.4 %
(8/125)
  
Last year of surveillance: 2009
1996–2009 [17]
Spain/>18 years, hospitalized
Prospective, 2 university hospitals (Barcelona), ongoing observational study
S. pneumoniae-positive empyema
IPD
1996–2001
2005–2009
12.2 %
11.5 %
(62/508)
(66/572)
1996–2001
2006–2009
1.6
1.8
 
18–50 years
   
1996–2001
2005–2009
7.6 %
14.9 %
n/a
n/a
1996–2001
2005–2009
0.5
1.6i
 
50–65 years
   
1996–2001
2005–2009
17.3 %
11.5 %
n/a
n/a
1996–2001
2005–2009
1.4
1.2
 
>65 years
   
1996–2001
2005–2009
12.7 %
8.8 %
n/a
n/a
1996–2001
2005–2009
4.8
3.5
2001–2009 [39]
Spain/adults, hospitalized
Prospective, single tertiary care hospital (Barcelona), all cases during study period
S. pneumoniae-positive pleural effusion or empyema
Pneumococcal pneumonia
Pleural effusion
19.5 %
(122/626)
 
n/a
     
Empyema
2.9 %
(18/626)
  
Last year of surveillance: 2010
1996–2010 [47]
Spain/18–64 years, hospitalized
Retrospective, single university hospital (Barcelona)
S. pneumoniae-positive empyema
IPD
Healthy adults
Adults with comorbidities
15.0 %
6.9 %
(33/220)
(36/525)
 
n/a
C. All ages
North America
Last year of surveillance: 2008
1996–2008 [61]
USA/all ages, hospitalized
Retrospective, national inpatient database
S. pneumonia-positive empyema
Empyema
 
n/a
n/a
1996
0.68
        
2008
0.74
CAP, community-acquired pneumonia; CPP, complicated pneumococcal pneumonia; IPD, invasive pneumococcal disease; IR, incidence rate; n/a, not applicable; PCV13, 13-valent pneumococcal conjugate vaccine; PCR, polymerase chain reaction; PPV23, 23-valent pneumococcal polysaccharide vaccine; RT-PCR, reverse transcriptase PCR
a n indicates the number of cases with CPP
b N indicates the number of cases in the patient population
c p < 0.01 for increase
d p < 0.05 vs. 2010–2011
e p < 0.05 for decrease
f p < 0.01 for decrease
g p < 0.05 for increase
hLower 95 % confidence interval of incidence rate ratio >1
i p ≤ 0.001 for increase

Incidence

The incidence of any-cause empyema among children aged <19 years in Utah (USA) (1994–2007) [30, 31] and Australia (1998–2010) [19] ranged from 0.9 to 12.5 per 100,000 population, and tended to increase over time; the incidence was highest in children aged 0–4 years (Table 2) [19]. Likewise, in Spain from 1997–2001 to 2002–2006, the PnEmp incidence was lower in children aged 5–17 years (0.5–1.3 per 100,000 population) as compared to younger children [12]. In 1996–2001 and 2006–2009, the adult PnEmp incidence was higher in those aged >65 years (3.5–4.8 per 100,000) than other adult age groups (0.5–1.8 per 100,000) (Table 2) [17].
The incidence for PnEmp tended to increase from the late 1990s to the mid-2000s in children in the USA [10, 16] and Spain [12], but remained lower in children aged 5–17 years compared with younger children (Table 2) [12]. For example, the PnEmp incidence among children aged <18 years in Utah (USA) increased from 10.3 per 100,000 population in 1996–2000 to 14.3 per 100,000 population in 2001–2003 [10], and increased in children aged 2–4 years in the USA from 1.1 to 2.5 per 100,000 population from 1996-1998 to 2005–2007, respectively [16]. In Spain from 1997–2001 to 2002–2006, the PnEmp incidence increased from 2.2 to 9.2 per 100,000 population in children aged <2 years and from 1.5 to 9.2 per 100,000 population in children aged 2–4 years [12]. Of note, two studies from Spain showed significant declines in the PnEmp incidence following the introduction of PCV13 into the pediatric immunization program: in one, from 6.73 to 4.14 per 100,000 from 2009–2010 to 2010–2011 (age <15 years) [46]; in the other, from 5.72 to 3.12 per 100,000 population from 2007–2010 to 2011–2012 (p = 0.0019) (age <15 years) [49], and from 3.57 to 2.66 per 100,000 population (p = 0.0224) (ages ≥12 to <24 months) (Table 2) [49].

Proportion of cases with CPP

Outcomes used as numerators for proportions of cases with CPP ranged from more general (e.g., pulmonary complications, complicated pneumonia) to more specific (e.g., empyema, cavitatory disease). Denominators varied, including hospitalized patients, hospitalized patients with CAP, hospitalized patients with pneumococcal CAP, or children with parapneumonic PnEmp. In addition, the assessment methods varied in sensitivity, which may have affected the reported proportions. For example, in hospitalized children with empyema in Australia, only 7.5 % of pleural fluid cultures, but 51.0 % of pleural fluid PCRs, were pneumococcal-positive [58].
The proportion of cases of CPP or PnEmp among hospitalized children with pneumococcal pneumonia or IPD ranged from 7.9 to 71.4 % (Table 2) and tended to increase over time [9, 10, 12, 16, 18, 3237, 41, 4446, 49]. For example, the proportions of cases of CPP or PnEmp in hospitalized children with IPD in Spain increased from 6.9 % in 1997–2001 [12] to 65.4 % during 2007–2009 [10, 18, 41, 4446, 49]. Among hospitalized children with CAP in Utah (USA), the proportion of cases of complicated pneumonia and empyema increased from 13 % in 1994 to 41 % in 1997 [30]. Among children with complicated pneumonia or empyema, the proportion of cases of PnEmp as reported in several countries ranged from 0 to 54.4 %, although the sample sizes were often small [7, 13, 14, 49, 50, 5260, 62].
Among hospitalized adults with pneumococcal CAP, the proportions of cases with pleural effusion (PE) (15.2–19.5 %, Spain) [38, 39] were higher than those for PnEmp (6.4 %, Spain) [38] or necrotizing pneumonia (6.5–6.6 %, USA) [40]. Among hospitalized adults with IPD in Spain, 6.9–15.0 % were diagnosed with PnEmp (Table 2) [17, 47].

Effect of age on the incidence and proportion of cases of CPP

The effect of age on CPP was not consistent across studies, and age effects for incidence differed as compared to proportion. In most studies, older children comprised a larger proportion of those with CPP or PnEmp relative to other pneumococcal diseases. In Utah (USA) (1997–2010), children with CPP were significantly older than those with other forms of IPD (37 months vs. 25 months; p < 0.001) [18]. Among children with pneumococcal pneumonia in the USA (1993–2000), the proportion of cases with CPP increased with age from 26.4 % (ages 0–12 months) to 53.0 % (ages >61 months) [34]. In contrast, in a study of children from four Asian countries (Vietnam, China, Korea, and Taiwan), empyema and PE were most common in the younger age groups, particularly those ≤4 years of age [13].
The pattern of age-specific incidence may differ from that of the proportion of cases. For example, among hospitalized children with IPD in Spain (1997–2006), the proportion of cases with PnEmp increased with age from 6.9–17.9 % (ages <2 years) to 21.4–33.3 % (ages 5–17 years), whereas the PnEmp incidence declined with age from 2.2–9.2 per 100,000 population (ages <2 years) to 0.5–1.3 per 100,000 population (ages 5–17 years), which seems to parallel the pattern of IPD incidence among children [12]. In particular, in another study in Spain (2007–2012), the PnEmp incidence was greater among children aged ≥24 to <60 months (8.55–13.81 per 100,000 population) than among younger (<12 months: 1.78– 1.36 per 100,000 population) or older (5–15 years: 1.53–2.36 per 100,000 population) children [49].
In Spain (1996–2009), although adults aged 50–65 years had a higher proportion of cases of PnEmp (17.3 %) than adults aged >65 years (12.7 %), the PnEmp incidence was lower among adults aged 50–65 years than those aged >65 years (1.4 vs. 4.8 per 100,000 population, respectively) [17], which is consistent with the trend of age-specific incidence of IPD with aging.

Serotype epidemiology

Table 3 presents data on serotype epidemiology [79, 14, 15, 17, 18, 3035, 37, 3941, 43, 44, 46, 47, 49, 5160, 62, 64, 6669, 72, 73, 7584, 8691, 93, 94, 97, 99, 101, 102]. Globally, serotypes 1 and 19A exhibited strong associations with pneumococcal PE [15, 52, 66, 69], PnEmp [10, 31, 43, 46, 49, 54, 57, 58, 60, 68, 72, 81, 83, 88, 90, 93, 101], or both [32, 39, 44].
Table 3
Distribution of community-acquired complicated pneumonias by serogroup/serotype
Years, country/[ref]
Serotype assessment methodology/source/diagnosis
Isolates
Serogroups or serotypes
Age range/subgroup
Number serotyped
PCV7 serotypes/serogroups (%a)
6 additionalb serotypes/serogroups in PCV13 (%a)
11 additionalc serotypes/serogroups in PPV23 (%a)
Non-vaccine serotypes/serogroups, or other (%a)
Serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F
Serotypes 1, 3, 5, 6A, 7F, and 19A
Serotypes 2, 8, 9N, 10A, 11A, 12F, 15B, 17F, 20, 22F, and 33F
A. Children
North America
Last year of surveillance: 1999
1993–1999, USA/[30]
Capsular swelling/bl, pl/pneumococcal empyema
<19 years
26
9 (15.4 %)
1 (50.0 %)
12 (3.8 %)
29 (3.8 %)
14 (15.4 %)
  
Non-typeable (3.8 %)
18 (3.8 %)
   
19 (3.8 %)
   
Subtotald
38.5 %
50.0 %
3.8 %
7.7 %
Last year of surveillance: 2000
1993–2000, USA/[34]
Quellung/bl and/or pl/CPP
Children
133
14 (29.1 %)
1 (24.4 %)
0
Other (5.5 %)
19 (9.0 %)
3 (8.4 %)
  
6 (8.4 %)
5 (3.4 %)
  
9 (5.0 %)
   
4 (3.4 %)
   
23 (3.4 %)
   
Subtotald
58.3 %
36.2 %
0
5.5 %
Last year of surveillance: 2001
1996–2001, Tennessee, USA/[7]
Quellung/bl, pl/CPP
4 months to 16.5 years
20
14 (35.0 %)
1 (25.0 %)
12 (5.0 %)
 
23F (10.0 %)
19A (15.0 %)
22 (5.0 %)
 
9V (5.0 %)
   
Subtotald
50.0 %
40.0 %
10.0 %
0 %
Last year of surveillance: 2003
2000–2003, Canada/[56]
Quellung/bl, pl, lt/pneumococcal empyema
<18 years
35
14 (28.6 %)
3 (25.7 %)
  
6B (8.6 %)
1 (22.9 %)
  
9V (5.7 %)
6A (2.9 %)
  
4 (2.9 %)
   
23F (2.9 %)
   
Subtotald
48.6 %
51.4 %
0 %
0 %
Last year of surveillance: 2005
1996–2005, USA/[73]
Capsular swelling/bl, pl/pneumococcal empyema
<18 years/1996–2000
24
14 (12.5 %)
1 (45.8 %)
 
Not tested (8.3 %)
6B (8.3 %)
6A (4.2 %)
  
19F (8.3 %)
19A (4.2 %)
  
9V (4.2 %)
   
23F (4.2 %)
   
Subtotald
37.5 %
54.2 %
0 %
8.3 %
  
2001–2005
50
19F (6.0 %)
1 (34.0 %)
9N (2.0 %)
28 (2.0 %)
    
9V (4.0 %)
3 (20.0 %)
22 (2.0 %)
Not tested (8.0 %)
    
4 (2.0 %)
19A (14.0 %)
  
    
18C (2.0 %)
7 (4.0 %)
  
Subtotald
   
14.0 %
72.0 %
4.0 %
10.0 %
Last year of surveillance: 2006
1997–2006, USA/[35]
Capsular swelling/bl, pl/pneumococcal necrotizing pneumonia
<18 years/1997–2006
38
6B (5.2 %)
3 (28.9 %)
8 (2.6 %)
19 (10.5 %)
4 (2.6 %)
19A (10.5 %)
17 (2.6 %)
NT (5.3 %)
19F (2.6 %)
1 (7.9 %)
 
NG (2.6 %)
     
6A (2.6 %)
 
6 (2.6 %)
     
7 (2.6 %)
 
18 (2.6 %)
       
28 (2.6 %)
       
29/38/42 (2.6 %)
Subtotald
   
10.4 %
52.5 %
5.2 %
28.8 %
  
1997–2000
5
6B (40.0 %)
1 (20.0)
0
0
    
19F (20.0 %)
6A (20.0)
  
Subtotald
   
60.0 %
40.0 %
0 %
0 %
  
2001–2006
27
4 (3.7 %)
7 (40.7 %)
8 (3.7 %)
19 (14.8 %)
     
19A (14.8 %)
17 (3.7 %)
NG (3.7 %)
     
3 (7.4 %)
 
NT (7.4 %)
Subtotald
   
3.7 %
63.0 %
7.4 %
25.9 %
Last year of surveillance: 2007
1993–2007, Utah, USA/[31]
Capsular swelling/bl, pl/pneumococcal empyema
<18 years/1993–1999
26
14 (15.4 %)
1 (50.0 %)
 
Others (11.5 %)
9V (15.4 %)
   
19F (3.8 %)
   
    
18C (3.8 %)
   
Subtotald
   
38.4 %
50.0 %
0 %
11.5 %
  
2001–2007
51
9V (2.0 %)
1 (33.3 %)
17 (2.0 %)
38 (2.0 %)
     
3 (27.5 %)
22F (2.0 %)
Non-typeable (2.0 %)
     
19A (25.5 %)
  
     
7F (3.9 %)
  
Subtotald
   
2.0 %
90.2 %
4.0 %
4.0 %
Last year of surveillance: 2009
2007–2009, USA/[67]
Multiplex immunoassay/pl/CPP
0.4–15 years
49
6B (2.0 %)
3 (26.5 %)
8 (2.0 %)
Non-typeable (18.4 %)
 
19A (22.4 %)
33F/33A (2.0 %)
 
 
7F/7A (14.3 %)
  
     
1 (12.2 %)
  
Subtotald
   
2.0 %
75.5 %
4.0 %
18.4 %
2009, Utah, USA/[64]
Real-time PCR/pl/pneumococcal empyema
<18 years
45
 
7F (46.7 %)
 
Untyped (22.2 %)
 
19A (13.3 %)
  
 
3 (13.3 %)
  
     
1 (4.4 %)
  
Subtotald
   
0 %
77.8 %
0 %
22.2 %
Last year of surveillance: 2010
1997–2010, Utah, USA/[18]
Capsular swelling/bl, pl/CPP
<18 years/1997–2000
22
PCV7 (40.9 %)
  
Other (59.1 %)
Subtotald
   
40.9 %
0 %
0 %
59.1 %
  
2001–2010
127
PCV7 (5.5 %)
1 (19.7 %)
22F (3.9 %)
Other (19.7 %)
     
7F (18.9 %)
  
     
19A (17.3 %)
  
     
3 (16.5 %)
  
Subtotald
   
5.5 %
72.4 %
3.9 %
19.7 %
South America
Last year of surveillance: 2004
1998–2004, Uruguay/[76]
Latex agglutination/bl, pl/pneumococcal empyema
Children
237
14 (24.1 %)
1 (23.6 %)
8 (0.8 %)
18B (0.4 %)
9V (3.8 %)
5 (23.2 %)
9N (0.8 %)
7 (0.4 %)
6B (2.1 %)
3 (10.1 %)
12 (0.4 %)
 
    
19F (0.8 %)
7F (3.4 %)
10A (0.4 %)
 
    
4 (0.4 %)
19A (3.0 %)
15 (0.4 %)
 
     
6A (0.8 %)
22 (0.4 %)
 
      
33 (0.4 %)
 
Subtotald
   
31.2 %
64.1 %
3.8 %
0.8 %
2002–2004, Uruguay/[66]
Quellung/pl/CPP
0–14 years
191
n/a
1 (26.2 %)e
n/a
n/a
Subtotald
   
n/a
26.2 %
n/a
n/a
Europe
Last year of surveillance: 2001
1997–2001, England/[8]
Latex agglutination; ELISA (PCV13 serotypes)/pl/pneumococcal empyema
0.6–16.9 years
43
14 (11.6 %)
1 (39.5 %)
 
Negative (23.2 %)
     
3 (7.0 %)
 
Insufficient (18.6 %)f
Subtotald
   
11.6 %
46.5 %
0 %
41.9 %
Last year of surveillance: 2003
1997–2003, England/[55]
EIA (PCV13 serotypes)/bl, pl/pneumococcal cavitatory empyema
0.5–16.9 years
11
14 (18.2 %)
1 (36.4 %)
  
9V (18.2 %)
3 (27.3 %)
  
Subtotald
   
36.4 %
63.7 %
0 %
0 %
Last year of surveillance: 2004
2002–2004, France/[72]
Latex agglutination/bl, pl/pneumococcal empyema
<15 years
30
14 (13.3 %)
19A (26.7 %)
  
23F (6.7 %)
1 (23.3 %)
  
    
6B (3.3 %)
3 (10.0 %)
  
    
9V (3.3 %)
5 (6.7 %)
  
    
18C (3.3 %)
7F (3.3 %)
  
Subtotald
   
30.0 %
70.0 %
0 %
0 %
2003–2004, England/[99]
ELISA (PCV13 serotypes)/pl/pneumococcal empyema
0.8–14.8 years
27
4 (14.8 %)g
1 (66.7 %)
  
9V (3.7 %)
3 (7.4 %)
  
23F (3.7 %)g
7F (3.7 %)
  
Subtotald
   
22.2 %
77.8 %
0 %
0 %
Last year of surveillance: 2006
1990–2006, Scotland/[57]
Not specified/bl, pl, sp/pneumococcal empyema
0–14 years
6
n/a
1 (50.0 %)e
n/a
Not tested (50.0 %)
Subtotald
   
n/a
50.0 %
n/a
n/a
2004–2006, Spain/[101]
MLST/pl/pneumococcal empyema
<14 years
27
14 (11.1 %)
1 (29.6 %)
 
Other serotypes not confirmed (55.6 %)
19A (3.7 %)
 
Subtotald
   
11.1 %
33.3 %
0
55.6 %
2003–2006, Spain/[87]
Quellung, real-time PCR/bl, pl/pneumococcal empyema
<18 years
111
14 (8.1 %)
1 (47.7 %)
8 (0.9 %)
 
9V (1.8 %)
7F (12.6 %)
  
19F (0.9 %)
3 (10.8 %)
  
     
5 (8.1 %)
  
     
19A (7.2 %)
  
     
6A (1.8 %)
  
Subtotald
   
10.8 %
89.1 %
0.9 %
0
2003–2006, Spain/[15]
Quellung/bl, pl/pneumococcal parapneumonic pleural effusion
<18 years
27
14 (11.1 %)
1 (37.0 %)
  
6B (3.7 %)
3 (14.8 %)
  
9V (3.7 %)
5 (14.8 %)
  
     
19A (7.4 %)
  
     
6A (3.7 %)
  
     
7F (3.7 %)
  
Subtotald
   
18.5 %
81.5 %
0
0
2003–2006, Spain/[93]
Real-time PCR/pl/pneumococcal empyema
Children
67
14 (4.5 %)
1 (34.3 %)
8 (1.5 %)
Unknown (22.4 %)
19F/B/C (1.5 %)
7F/7A (16.4 %)
3 (11.9 %)
19A (4.5 %)
5 (3.0 %)
  
Subtotald
   
6.0 %
70.1 %
1.5 %
22.4 %
Last year of surveillance: 2007
2007, France/[97]
Latex agglutination/pl, hospitalized patients with pneumococcal disease
1 month to 12.6 years
10
 
1 (50.5 %)
  
19A (50.5 %)
  
Subtotald
   
0 %
100 %
0 %
0 %
1997–2007, Spain/[86]
Quellung, real-time PCR (19A only, 1997–2001)/bl, pl/pneumococcal empyema
1 month to 17 years
1997–2001: 7
n/a
19A (0)e
n/a
Other (100 %)
   
2002–2004: 13
 
19A (7.7 %)e
 
Other (92.3 %)
   
2005–2007: 34
 
19A (17.6 %)e
 
Other (82.4 %)
Last year of surveillance: 2008
1989–2008, Spain, Barcelona/[68]
Quellung/bl, other sterile sites/pneumococcal empyema
<18 years
68
n/a
1 (41.2 %)
n/a
Serotypes other than 1 (58.8 %)
Subtotald
   
n/a
41.2 %
n/a
n/a
Last year of surveillance: 2009
1992–2009, France/[77]
Not specified/bl, pl/pneumococcal pleural effusion
6 months to 15 yearsh/2006–2009
4
 
19A (50.0 %)
  
1 (25.0 %)
  
5 (25.0 %)
  
Subtotald
   
0 %
100 %
0 %
0 %
2000–2009, France/[52]
Not specified/bl, pl/CPP
0–18 years/2000–2006
3
 
19A (33.3 %)
 
Unknown (66.7 %)
Subtotald
   
n/a
33.3 %
n/a
n/a
  
2006–2009
8
 
1 (50.0 %)
 
Unknown (12.5 %)
     
19A (25.0 %)
  
     
3 (12.5 %)
  
Subtotal d
   
n/a
87.5 %
n/a
n/a
2007–2009, Italy/[32]
Real-time PCR/bl/CPP
0–16 years
36
14 (5.6 %)
1 (50.0 %)
20 (2.8 %)
Non-typeable (2.8 %)
    
18 (5.6 %)
3 (13.9 %)
  
    
6 (2.8 %)
19A (11.1 %)
  
    
9V (2.8 %)
7F (2.8 %)
  
Subtotald
   
16.7 %
77.8 %
2.8 %
2.8 %
2005–2009, Spain/[88]
Quellung; PCR of culture-negative specimens/bl, pl/pneumococcal empyema
<14 years/2005–2009
104
14 (2.9 %)
1 (42.3 %)
 
12A (1.0 %)
9V (1.0 %)
7F (20.2 %)
  
19F (1.0 %)
3 (16.3 %)
  
 
19A (7.7 %)
  
     
5 (6.7 %)
  
     
6A (1.0 %)
  
Subtotald
   
4.8 %
94.2 %
0 %
1.0 %
  
2005–2007
53
14 (3.8 %)
1 (43.4 %)
  
    
19F (1.9 %)
7F (26.4 %)
  
     
3 (15.1 %)
  
     
19A (3.8 %)
  
     
5 (3.8 %)
  
     
6A (1.9 %)
  
Subtotald
   
5.7 %
94.3 %
0 %
0 %
  
2007–2009
51
14 (2.0 %)
1 (41.2 %)
 
12A (2.0 %)
    
9V (2.0 %)
3 (17.6 %)
  
     
7F (13.7 %)
  
     
19A (11.8 %)
  
     
5 (9.8 %)
  
Subtotald
   
3.9 %
94.1 %
0 %
2.0 %
2006–2009, Spain/[51]
Real-time PCR/pl/pneumococcal empyema
Children (mean age 6.5 years)
28
6B (7.1 %)
1 (35.7 %)
n/a
Unknown serotype (14.3 %)
9V (7.1 %)
7F (10.7 %)
 
14 (3.8 %)
19A (10.7 %)
 
23F (3.8 %)
3 (7.1 %)
 
Subtotald
   
21.4 %
64.3 %
n/a
n/a
2007–2009, Spain/[44]
Quellung; real-time PCR if culture-negative/bl, pl/pneumococcal empyema
3–59 months
189
Specific PVC7 serotypes were not specified (2.6 %)
1 (24.9 %)
n/a
Other serotypes not specified (39.7 %)
3 (14.8 %)
 
19A (14.3 %)
 
7F (3.7 %)
 
Subtotald
   
2.6 %
57.7 %
n/a
n/a
2007–2009, Spain/[43, 90]
Quellung, PCR/bl, pl/pneumococcal empyema
<15 years
100
 
1 (38.0 %)
 
Other serotypes not specified (19.0 %)
5 (15.0 %)
 
19A (11.0 %)
 
     
7F (9.0 %)
  
     
3 (8.0 %)
  
Subtotald
   
n/a
81.0 %
n/a
n/a
1998–2009, Spain/[78]
Latex agglutination bl, CSF, pl, synovial fluid, peritoneal fluid/pneumococcal empyema
<16 years
22
n/a
19A (13.6 %)e
n/a
n/a
Subtotald
   
n/a
n/a
n/a
n/a
2008–2009, UK/[62]
Not specified/pl/pneumococcal empyema with or without fistula
<17 years/bronchopleural fistula
13
 
3 (76.9 %)
19 (7.7 %)
 
Unidentified (7.7 %)
Not tested (7.7 %)
Subtotald
   
n/a
84.6 %
n/a
n/a
  
Empyema without fistula
15
 
1 (46.7 %)
 
Unidentified (6.7 %)
     
3 (6.7 %)
 
Not tested (33.3 %)
     
7A/F (6.7 %)
  
Subtotald
   
n/a
60.0 %
n/a
n/a
Last year of surveillance: 2010
2009–2010, France/[84]
Latex agglutination; multiplex PCR/bl, pl/pneumococcal empyema
0.8–14.7 years
11
 
19A (54.5 %)
  
1 (18.2 %)
  
7F/A (18.2 %)
  
     
3 (9.1 %)
  
Subtotald
   
0 %
100 %
0 %
0 %
2006–2010, Spain/[89]
Latex agglutination/bl, pl, brpneumococcal empyema
Children (age range not otherwise specified)
1
n/a
7F (100 %)
n/a
n/a
Subtotald
   
0 %
100 %
0 %
0 %
Last year of surveillance: 2011
2006–2011, UK/[94]
Multiplex polysaccharide antigen detection assay/pl (culture-negative)/pneumococcal empyema
0–16 years
136
n/a
1 (43 %)
3 (21 %)
7 (11 %)
19A (10 %)
n/a
n/a
Subtotald
   
n/a
85 %
n/a
n/a
2009–2011, UK/[75]
RT-PCR/pl/pneumococcal empyema
≤16 years
18
n/a
1 (38.9 %)
 
Non-typeable: 5.6 %
3 (27.8 %)
  
19A (22.2 %)
  
7A/F (5.6 %)
  
Subtotald
   
0 %
94.4 %
0 %
5.6 %
2008–2011, Italy/[37]
Real-time PCR (PCV13 serotypes)/bl/CPP
≤5 years
18
4 (5.6 %)
19A (33.3 %)
 
Untypeable or other serotype (33.3 %)
14 (5.6 %)
3 (11.1 %)
 
 
7F (5.6 %)
 
     
1 (5.6 %)
  
Subtotal d
   
11.2 %
55.6 %
0 %
33.3 %
2007–2011, Spain/[46]
Quellung; real-time PCR/bl, pl/bacteremic pneumococcal empyema
<15 years
209
n/a
1 (41.6 %)e
n/a
n/a
Subtotald
   
n/a
41.6 %e
n/a
n/a
2010–2011, Turkey/[60]
Multiple antigen testing (PCV13 serotypes/serogroups and serotype 8)/pneumococcal empyema
0–18 years
55
19F (5.5 %)
1 (14.5 %)
8 (5.5 %)
18 (1.8 %)
6B (3.6 %)
5 (12.7 %)
 
Non-classified (36.4 %)
14 (3.6 %)
3 (9.1 %)
  
9V (1.8 %)
7F (1.8 %)
  
23F (1.8 %)
19A (1.8 %)
  
Subtotald
   
16.4 %
40.0 %
5.5 %
38.2 %
Last year of surveillance: 2012
2007–2012, Spain/[49]
Quellung, real-time PCR
<15 years/2007-2010
167
Individual PCV7 serotypes not specified (4.2 %)
1 (39.5 %)
n/a
Other serotypes not specified (16.8 %)
19A (15.6 %)
 
5 (9.6 %)
 
     
3 (9.0 %)
  
     
7F (5.4 %)
  
Subtotald
   
4.2 %
83.2 %
n/a
n/a
  
2011–2012
32
n/a
1 (37.5 %)
n/a
Other serotypes not specified (34.4 %)
     
3 (15.6 %)
 
     
7F (12.5 %)
  
Subtotald
   
n/a
65.6 %
n/a
n/a
Middle East/North Africa
Last year of surveillance: 1997
1986–1997, Israel/[33]
Not specified/not specified/CPP
0–16 years
22
n/a
1 (31.8 %)e
n/a
n/a
Subtotald
   
n/a
31.8 %e
n/a
n/a
Last year of surveillance: 2002
1990–2002, Israel/[14]
Quellung/bl, pl/CPP
0–18 years
11
4 (25.0 %)
1 (62.5 %)
  
     
5 (12.5 %)
  
Subtotald
   
25.0 %
75.0 %
0 %
0 %
Last year of surveillance: 2009
2000–2009, Israel/[69]
Quellung/bl/pneumococcal bacteremic pneumonia with pleural effusion
<18 years
28
14 (14.3 %)
1 (53.6 %)
None
None
19F (3.6 %)
5 (17.9 %)
  
 
19A (7.1 %)
  
 
6A (3.6 %)
  
Subtotald
   
17.9 %
82.1 %
0 %
0 %
2000–2009, Israel/[79]
Not specified/pl, bl/pneumococcal empyema
2 months to 18 years
8
9V (25.0 %)
5 (37.5 %)
None
None
4 (12.5 %)
3 (12.5 %)
  
14 (12.5 %)
   
Subtotald
   
50.0 %
50.0 %
0 %
0 %
Asia-Pacific
Last year of surveillance: 2003
1995–2003, Taiwan/[9]
Slide agglutination/bl, pl/CPP
9–144 months
19
14 (68.4 %)
   
6 (21.1 %)
   
23 (10.5 %)
   
Subtotald
   
100 %
0 %
0 %
0 %
1998–2003, Taiwan/[80]
Slide agglutination/bl, pl/CPP
9–85 months
10
14 (50.0 %)
3 (30.0 %)
  
18C (10.0 %)
6A (10.0 %)
  
Subtotald
   
60.0 %
40.0 %
0 %
0 %
Last year of surveillance: 2004
1997–2004, Singapore/[41]
Quellung/bl, pl/invasive pneumococcal pneumonia or empyema
3 months to 19.5 years
62i
14 (33.9 %)
6A (8.1 %)
  
6B (17.7 %)
19A (4.8 %)
  
6j (3.2 %)
1 (1.6 %)
  
23F (17.7 %)
   
    
19F (4.8 %)
   
    
19j (3.2 %)
   
    
18j (4.8 %)
   
Subtotald
   
74.2 %
14.5 %
n/a
n/a
Last year of surveillance: 2009
2007–2009, Australia/[58]
Multiplex PCR/bl, pl/pneumococcal empyema
0.4–15.5 months
55j
14 (1.8 %)
19A (36.4 %)
22F/22A (3.6 %)
6C (1.8 %)
9V/A (1.8 %)
3 (32.7 %)
 
15F (1.8 %)
 
1 (14.5 %)
 
21 (1.8 %)
     
7F/7A (3.6 %)
  
Subtotald
   
3.6 %
87.3 %
3.6 %
5.5 %
2007–2009, Australia/[59]
Multiplex PCR/pl/pneumococcal empyema
≤16 years
29
9V/9A (3.4 %)
19A (41.4 %)
22F/22A (6.9 %)
None
3 (31.0 %)
  
1 (13.8 %)
  
     
7F/7A (3.4 %)
  
Subtotald
   
3.4 %
89.7 %
6.9 %
0 %
2006–2009, Taiwan/[102]
MLST/bl, pl/pneumococcal necrotizing pneumonia
<18 years
12
14 (75.0 %)
19A (16.7 %)
None
None
3 (8.3 %)
  
Subtotald
   
75.0 %
25.0 %
0 %
0 %
2008–2009, Taiwan/[53]
Quellung, multiplex PCR/bl, pl/pneumococcal empyema, or pneumococcal parapneumonic pleural effusion
<18 years/empyema
33
14 (12.1 %)
19A (42.4 %)
 
Unknown (24.2 %)
6B (6.1 %)
3 (12.0 %)
  
 
1 (3.0 %)
  
Subtotald
   
18.2 %
57.6 %
n/a
n/a
  
Parapneumonic pleural effusion
20
6B (5.0 %)
19A (20.0 %)
 
23A (5.0 %)
14 (5.0 %)
3 (5.0 %)
 
Unknown (60.0 %)
Subtotald
   
10.0 %
25.0 %
n/a
n/a
Last year of surveillance: 2010
2003–2010, Korea/[54]
Multiplex PCR/pl/pneumococcal empyema
29–124.5 months
13
14 (7.7 %)
19A (46.2 %)
 
34 (7.7 %)
1 (7.7 %)
 
Untypeable (30.8 %)
Subtotald
   
7.7 %
53.8 %
0 %
38.5 %
1998–2010, Taiwan/[48]
Quellung/bl, pl/CPP
<18 years
31
14 (32.3 %)
3 (35.5 %)
  
6B (12.9 %)
19A (12.9 %)
  
9V (6.5 %)
   
Subtotald
   
51.6 %
48.4 %
0 %
0 %
Last year of surveillance: 2011
2007–2011, Taiwan/[83]
Latex agglutination/bl, pl/pneumococcal necrotizing pneumonia, pneumococcal empyema
<18 years/necrotizing pneumonia
13
n/a
19A (69.2 %)e
n/a
n/a
Subtotald
 
Empyema
31
n/a
n/a
n/a
n/a
    
n/a
19A (71.0 %)e
n/a
n/a
Subtotald
   
n/a
n/a
n/a
n/a
B. Adults
North America
Last year of surveillance: 2010
2000–2010, Texas, USA/[40]
Agglutination; Quellung/source not specified/necrotizing pneumococcal pneumonia
Adults
16
9V (12.5 %)
3 (31.2 %)
12F (6.2 %)
15A (6.2 %)
6B (6.2 %)
 
9N (6.2 %)
33A (6.2 %)
19F (6.2 %)
 
15B (6.2 %)
Other (not specified) (6.2 %)
23F (6.2 %)
  
Subtotald
   
31.2 %
31.2 %
18.8 %
18.8 %
2009–2010, Utah, USA/[82]
Not specified/bl, pl/pneumococcal empyema
≥18 years
6
n/a
19A (50.0 %)e
n/a
n/a
7F (33.3 %)e
  
Subtotald
   
n/a
83.3 %
n/a
n/a
Europe
Last year of surveillance: 2007
2007, France/[97]
Latex agglutination; multiplex PCR/pl, hospitalized patients with pneumococcal disease
≥15 years
12
n/a
19A (33.3 %)e
n/a
n/a
Subtotald
   
n/a
33.3 %
n/a
n/a
Last year of surveillance: 2009
1996–2009, Spain/[17]
Quellung/bl, pl/pneumococcal empyema
>18 years/1996–2001
61
9V (6.6 %)
3 (24.6 %)
8 (6.6 %)
Other (11.5 %)
14 (6.6 %)
1 (14.8 %)
  
4 (1.6 %)
7F (9.8 %)
  
    
19F (1.6 %)
6A (8.2 %)
  
    
Other PCV7 serotypes (8.2 %)
5 (3.3 %)
  
     
19A (3.3 %)
  
Subtotald
   
24.6 %
57.4 %
6.6 %
11.5 %
  
2005–2009
60
14 (5.0 %)
1 (43.3 %)k
8 (1.7 %)
Other (10.0 %)
    
4 (3.3 %)
3 (13.3 %)
  
    
19F (3.3 %)
7F (6.7 %)
  
    
9V (1.7 %)
6A (5 %)
  
    
Other PCV7 serotypes not listed (1.7 %)
5 (3.3 %)
  
     
19A (1.7 %)
  
Subtotald
   
15.0 %
73.3 %
1.7 %
10.0 %
2006–2009, Spain/[39]
Multiplex real-time PCR/bl, pl, sp/CPP
Adults
52
14 (7.7 %)
1 (32.7 %)
12F (5.8 %)
9A (1.9 %)
4 (3.8 %)
19A (21.2 %)
10A (1.9 %)
31 (1.9 %)
9V (3.8 %)
3 (9.6 %)
  
     
5 (5.8 %)
  
     
6A (1.9 %)
  
     
7F (1.9 %)
  
Subtotald
   
15.4 %
73.1 %
7.7 %
3.8 %
Last year of surveillance: 2010
1996–2010, Spain/[47]
Dot blot; Quellung/bl, pl/pneumococcal empyema
18–64 years
68
19F (4.4 %)
1 (25.0 %)
8 (2.9 %)
23A (2.9 %)
23F (4.4 %)
3 (11.7 %)
22 (2.9 %)
Other (16.2 %)
4 (2.9 %)
7F (5.9 %)
  
    
6B (2.9 %)
5 (4.4 %)
  
    
9V (2.9 %)
19A (4.4 %)
  
    
18C (2.9 %)
6A (2.9 %)
  
Subtotald
   
n/ae
54.4 %
n/ae
19.1 %
2006–2010, Spain/[89]
Latex agglutination/bl, pl, brpneumococcal empyema
Adults (age range not otherwise specified)
4
 
1 (50.0 %)
  
 
3 (25.0 %)
  
 
19A (25.0 %)
  
Subtotald
   
0 %
100 %
0 %
0 %
C. All ages
Asia-Pacific
Last year of surveillance: 2000
1996–2000, India/[81]
Co-agglutination/bl, pl/pneumococcal empyema
0–65 years
19
23 (5.3 %)
1 (47.4 %)
 
Other (10.5 %)
 
5 (10.5 %)
 
Untypeable (21.1 %)
 
3 (5.3 %)
  
Subtotald
   
5.3 %
63.2 %
n/a
n/a
bl, blood; br, bronchoscopy; CPP, complicated pneumococcal pneumonia; CSF, cerebrospinal fluid; lt, lung tissue; MLST, multilocus sequence typing; n/a, not applicable; NG, no growth during serotyping; NT, non-typeable; PAD, pneumococcal antigen detection via immunochromatography; PCR, polymerase chain reaction; PCV7, 7-valent pneumococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine; pl, pleural fluid; PPV23; 23-valent pneumococcal polysaccharide vaccine; RT-PCR, reverse transcriptase PCR; sp, sputum
a% = number of samples with a given serotype, divided by the number of samples serotyped, among patients with a given diagnosis
bSerotypes in addition to those in PCV7
cSerotypes in addition to those in PCV7 and serotypes 1 and 3, which are in PCV13
dSubtotal percentages were calculated based on the number of cases for a given serotype category divided by the number serotyped. Due to rounding, subtotals may not equal the sum of the percentages, and the subtotals in each row may not add up to 100
eOther serotypes not reported
fInsufficient pleural fluid available for testing
gOne specimen had two serotypes (4 and 23F)
hVaccinated with PCV7
iIncludes both pneumonia and empyema
jThree specimens had two serotypes each (19A and 3, 19A and 1, 6C and 15F)
k p < 0.001 for increase
In Utah (USA) (2001–2010), CPP in children was caused mainly by serotypes 1, 7F, 19A, and 3 (Table 3). Compared with other serotypes, serotype 1 was significantly more likely to cause CPP than other pneumococcal diseases (86 % vs. 29 %; odds ratio [OR], 14.0; p < 0.001) [18]. Among children with IPD in Spain (2002–2006), serotype 1 caused 29.6 % of cases of PnEmp, compared with 11.1 % caused by PCV7 serotypes (NB, which were all serotype 14 isolates) (Table 3) [101]. Similarly, among adults during 2006–2009 in Spain, serotype 1 caused 32.7 % of cases of PE [39].
Serotype 19A also appears to be important, particularly in the Asia-Pacific region. For example, serotype 19A caused 69.2 % and 71.0 % of cases of pneumococcal necrotizing pneumonia and PnEmp, respectively, in children in Taiwan [83], 46.2 % of PnEmp cases in children in Korea [54], and 36.4 % of PnEmp cases in children in Australia [58].
Serotypes varied in their prevalence as complicated versus uncomplicated pneumonia. In children in Utah (USA) (1997–2006), serotype 3 was the most frequent cause of pneumococcal necrotizing pneumonia (28.9 %; 11/38 cases), whereas serotype 1 (22.6 %; 28/124 cases) was predominant in uncomplicated pneumococcal pneumonia [35]. Conversely, among children with community-acquired invasive pneumococcal pneumonia (IPP) (i.e., pneumonia with S. pneumoniae isolated from blood or pleural fluid) in Italy (2007–2009), serotype 1 caused a significantly higher percentage of CPP than uncomplicated pneumonia (50 % vs. 18.2 %; p = 0.005) [32]. In children aged <18 years in Taiwan (1998–2010), the proportions of cases of CPP caused by PCV7 and non-PCV7 serotypes were similar (51.6 % and 48.4 %, respectively), and serotypes 14 and 3 were the most common serotypes (32.3 % and 35.5 % of cases, respectively). Serotype 3 was the most common serotype causing CPP compared with uncomplicated lobar pneumonia (OR, 0.114; 95 % confidence interval [CI], 0.013–0.973) [48].
In children with any-cause empyema in the UK (2002–2009), S. pneumoniae was the most frequently isolated organism, found in 44 of 70 children (62.9 %) from whom an organism was identified [62]. Serotype 3 was significantly more common in pneumococcal bronchopleural fistula (10/13 cases) compared with no fistula (1/15 cases) (p < 0.0001), whereas serotype 1 was the most common serotype among cases without fistula (7/15 cases) and was not found among those with fistula [62]. In children in England with cavitatory disease complicating PnEmp or pneumococcal parapneumonic effusion, the most common serotypes were 1 (4/11 cases, 36.4 %) and 3 (3/11 cases, 27.3 %) [55].
Among Spanish adults (2006–2009), serotype 1 was the most frequent cause of CPP (32.7 %) and uncomplicated pneumococcal pneumonia (31.2 %); the other frequent causes of complicated pneumonia, in descending order of frequency, were serotypes 19A, 3, 14, 5, and 12F (Table 3) [39]. In adults in the USA with pneumococcal pneumonia (n = 351), serotype 3, the most common cause of pneumonia overall, was isolated in 5 of 16 specimens (31.2 %) from patients with pneumococcal necrosis; 10 other serotypes caused the remaining 11 cases (Table 3) [40].
Serotype 1 undergoes periodic outbreaks, so it is possible that increases in serotype 1 PnEmp may be associated with a cyclic pattern [87]. Serotype 1 clones were analyzed in PnEmp among children [31, 87, 101] and adults [47]. Multilocus sequence typing (MLST) analysis of pediatric PnEmp cases in Utah (USA) suggested that replacement sequence types (STs) contributed to the increase in incidence of pediatric PnEmp post-PCV7 [31]. Before 2001, only ST227 (serotype 1) was identified; by 2003, six additional STs were associated with serotype 1, including a single-locus variant of ST227. In contrast, among serotype 1 isolates causing pediatric PnEmp in Spain (2004–2006), three clones were identified (ST228, ST306, and ST304); these were historically well-established clones [101]. A more recent study of pediatric PnEmp in Spain (2003–2006) identified the same three serotype 1 clones in pleural fluid [87]. MLST types associated with the increased incidence of pediatric PnEmp had been present previously in Spain and elsewhere in Europe, and, therefore, the increase in proportions of PnEmp (predominantly serotype 1) was probably not associated with the emergence of new clones or of capsular switching [87, 101]. For adults in Spain (1996–2010), an increase in PnEmp incidence in otherwise healthy adults with pneumonia was associated predominantly with serotype 1, in particular, ST306 [47].

Antibiotic resistance

Antibiotic sensitivity data are available from CPP isolates, which are predominately the serotypes 14, 1, and 19A; among these three predominant PCV13 serotypes, only 19A tends to be associated with antibiotic resistance (probably due to its relationship with nasopharyngeal carriage).
Among children in Utah (USA) (1993–1999), PnEmp was less likely than uncomplicated pneumococcal pneumonia to be caused by penicillin-resistant pneumococci (16 % vs. 48 %; p = 0.0021); all serotype 1 isolates were penicillin-susceptible [30]. For pediatric CPP in Tennessee (USA) (1996–2001), all serotype 1 isolates (n = 5) were susceptible to penicillin, whereas 5 of 7 serotype 14 isolates (the most frequently identified isolate in this sample) were penicillin-resistant [7]. (By contrast, in eight children’s hospitals in the USA (1993–2000), the antibiotic resistance rates were similar among isolates from CPP and uncomplicated pneumococcal pneumonias [34].)
Serotype 19A is associated with reduced sensitivity to antibiotics [15, 53, 83, 90]. In Spain, 11 % of cases of pediatric PnEmp were caused by serotype 19A; all three culture-positive serotype 19A isolates were non-susceptible to cefotaxime, and two were also non-susceptible to parenteral penicillin [90]. Other serotypes isolated in this study (1, 5, and 7F) were susceptible to parenteral beta-lactams and showed low rates of resistance to oral penicillin and erythromycin. In another Spanish study (2003–2006), 8 of 27 pneumococcal isolates from pediatric PnEmp showed reduced susceptibility to penicillin; two serotype 19A isolates and one each of serotypes 14 and 3 showed resistance to multiple antibiotics [15]. Similarly, in Taiwan (2007–2011), serotype 19A isolates from pediatric PnEmp had lower levels of susceptibility to cefotaxime than non-19A isolates, although the 19A and non-19A isolates had similar susceptibility to other antibiotics [83]. In Taiwanese children with empyema (2008–2009), 4 of 8 pneumococcal isolates were penicillin-resistant (i.e., serotypes 19A [n = 3] and 14 [n = 1]) [53].
Several studies evaluated the association of pneumococcal conjugate vaccine introduction with antibiotic resistance among pneumococcal serotypes associated with CPP or PnEmp. In Israel (1990–2002), no penicillin-resistant pneumococci were isolated from pediatric CPP [14], whereas in Taiwan (1995–2003), more pneumococcal isolates from pediatric CPP than from lobar pneumonia were intermediately susceptible or resistant to penicillin [9]. In a subsequent study (1996–2005), the penicillin resistance rates in PnEmp declined from 21 % to 12 % (p = 0.3) following PCV7 introduction [73]. Similarly, in Spain (2005–2009), all pneumococcal isolates (n = 34) from pediatric PnEmp were susceptible to penicillin [88].
In Spanish adults (2001–2009), significantly higher proportions of penicillin-susceptible isolates (p = 0.013) were identified from CPP compared with uncomplicated pneumococcal pneumonia, which was associated with a higher rate of erythromycin resistance (p = 0.033) [74]. Among adults in Spain with IPP, antibiotic resistance decreased and antibiotic susceptibility increased between 1996–2001 and 2005–2009, significantly so for penicillin (p = 0.01) [63]. Likewise, among adults with IPP in Spain (1996–2009), the proportion of cases caused by penicillin-susceptible pneumococcal strains increased from 71.7 % to 80.3 % (p = 0.012), and susceptibility to other antibiotics also trended upward [17].

Effect of age on serotype epidemiology

Age-based differences were observed in pneumococcal serotype proportions. In France (2007), both serotypes 1 (5/10 isolates) and 19A (5/10 isolates) were uniquely isolated from pleural fluid in children with IPD, whereas from pleural fluid in adults, the most frequent was serotype 19A (4/12 isolates) [97]. In Spanish studies, serotype 1 was associated with IPD in older children, whereas serotype 19A predominated in younger children [44, 49, 87, 90]. In Spain (2007–2009), among children aged 3–59 months with IPD, serotype 1 was the most frequent cause of PnEmp (24.9 % of all cases), and serotype 1 IPD was significantly more common in children aged 24–59 months than those aged 3–23 months (adjusted OR, 7.70; 95 % CI, 2.12–10.38) [44]. Serotype 19A-related IPD was noted to be more common among children aged <24 months, although the proportion of cases with PnEmp in this age group was not specified, and serotype 19A was also associated with PnEmp (14.3 % of all cases). In another Spanish study (2003–2006), serotypes 1, 5, 7F, and 14 (i.e., serotypes with higher invasive disease potential) were more frequent causes of PnEmp in older children (median ages 56 months vs. 24 months; p = 0.0001) compared with serotypes 6A, 9V, 19A, and 23F (i.e., serotypes with low invasive disease potential) [87]. This pattern was also evident in pediatric pneumonia in Italy (2007–2009): serotype 1 was only detected in children aged >2 years and was the predominant serotype associated with CPP (50 % of cases), whereas serotype 19A was significantly associated with younger age [32]. In Spanish children with PnEmp (2007–2009), serotype 1 was more common in children aged >36 months, serotype 3 was more common in children aged 24–36-months, and serotype 19A was more common in children aged <24 months [90]. More recently, in a Spanish study of children aged <15 years with PnEmp (2007–2012), the median overall age (52.0 vs. 44.0 months; p = 0.028) and the age of children with serotype 1 disease (74.0 vs. 49.5 months; p = 0.002) was significantly higher one year after the introduction of PCV13 (2011–2012) compared with 2007–2010 [49].

Discussion

The reported proportion of cases of CPP and PnEmp has increased over the past several decades. For example, among children aged <18 years with IPD in Utah (USA), the most common form of IPD had been bacteremia without focus (37 %) during 1997–2000, whereas by 2001–2010, CPP became the most common form of IPD (33 %); the proportion of CPP increased from 17 % (22/128 cases) to 33 % (127/385 cases) (p < 0.001) [18]. Among hospitalized children with IPD in Barcelona (Spain), the mean number of cases of PnEmp increased significantly from 1998–2001 to 2002–2005 (15 vs. 43, respectively; p < 0.02) [101].
Serotypes 1, 19A, 3, 14, and 7F predominated as causes of CPP and empyema. For example, in the USA (1993–2000), the most frequent serotypes causing pediatric CPP were serotypes 14 (29.1 %) and 1 (24.4 %) [34]. In another study in the USA (1996–2001), serotypes 14 (35.0 %), 1 (25.0 %), and 19A (15.0 %) were the most frequent causes of CPP [7]. In a study in Italy among children with CPP (n = 35), serotypes 1 (50.0 %), 3 (13.9 %), and 19A (11.1 %) predominated [32].
After the introduction of PCV7 into pediatric immunization programs, several studies reported increases in the proportion of CPP caused by non-PCV7 serotypes, particularly serotypes 1, 3, 7F, and 19A [17, 18, 31, 35, 50, 52]. In Barcelona (Spain), the proportion of serotype 19A pediatric PE increased from none (0/7) in 1997–2001, to 1/13 cases (8 %) during 2002–2004, to 6/34 cases (18 %) during 2005–2007; these data also reflect an increase in the overall number of pediatric PnEmp cases [86]. PCV7 serotypes and non-PCV7 serotypes caused similar proportions of cases of CPP (51.6 % and 48.4 %, respectively) in children in Taiwan during a period (1998–2010) when PCV7 immunization rates were low (i.e., in 2007, 15.9 % of children aged <5 years had received ≥1 dose), although serotype 3 was significantly more likely to cause CPP compared with lobar pneumonia [48]. While fewer data are available for PnEmp in adults, a Spanish study reported significant increases from 1996–2001 to 2005–2009 in the PnEmp incidence (0.5 to 1.6 cases/100,000 population; p <0.001) and the serotype 1 PnEmp incidence (0.1 to 0.8 cases per 100,000 population; p < 0.001) in adults aged 18–50 years [17]. In England, the serotype 19A incidence for pediatric CPP increased significantly from 0.48 to 2.02 per 1,000,000 children from 2006–2007 to 2010–2011 (incidence rate ratio, 4.17; 95 % CI, 1.53–14.2) [94].
Although in some studies the emergence of serotypes 1, 19A, 3, and 14 in CPP and PnEmp has corresponded to the years following the introduction of PCV7 [17, 18, 31, 35, 50, 52, 86], a few studies demonstrated that their increasing role in CPP and PnEmp began prior to the introduction of PCV7 [28, 29, 68]. For example, in a study of IPD in Spain (1989–2008), the proportion of cases of IPD caused by serotype 1 was increasing prior to the introduction of PCV7, and this trend continued after the introduction of PCV7 (2 %, 8.6 %, 14.9 %, and 23.8 % of cases in 1989–1993, 1994–1998, 1993–2003, and 2004–2008, respectively [p < 0.001]) [68]. This suggests that emergence involves more than simply serotype replacement following PCV7 introduction; characteristics particular to certain serotypes, such as differences in antibiotic sensitivity or their propensity to cause pleural infection, may be responsible for these increases. In addition, several studies established a relationship between the proportion of CPP and age that contrasts with the age-specific incidence of IPD [32, 40, 44, 49, 87, 90, 97], which may suggest an interaction between the propensity of given serotypes to infect and the age-dependent susceptibility of patients to infection by these same serotypes.
Recent data suggest that PCV13 may impact on pediatric PnEmp caused by serotypes associated with CPP, such as 1 and 19A. In Spain, where PCV13 was introduced in 2010, the incidence of pediatric PnEmp caused by serotypes targeted by PCV13 declined significantly from 2009–2010 to 2010–2011 (5.52 vs. 3.55 per 100,000 population; p = 0.049), mainly due to reductions in serotypes 1 (2.81 vs. 2.07 per 100,000 population) and 19A (1.51 vs. 0.69 per 100,000 population) [46]. More recently, in children aged <15 years in Spain, the PnEmp incidence declined significantly (p = 0.0019) from 5.72 to. 3.12 per 100,000 population in, respectively, 2007–2010 and 2011–2012, while the median age of children with PnEmp was greater in 2011–2012 (i.e., following PCV13 introduction) than 2007–2010 (47.0 vs. 42.0 months; p = 0.032) [49].
Although this review has recapitulated the basic epidemiology of CPP (including PnEmp) over the past several decades, the increased use of more specific diagnostic imaging (e.g., CT and ultrasound) in recent years may affect the reported rate of PE and empyema because of the more accurate identification. Improved diagnostic methodologies, clinical (ultrasound or CT vs. physical examination or chest X-ray) and microbiological (e.g., PCR vs. culture), as well as increased awareness of and vigilance for PE and empyema may have resulted in an apparent increase in the proportion of CPP over the time period included in this analysis, which, given the limitations of the retrospective nature of this analysis, may be a confounding factor in the determination of any true increase in the proportion of CPP.
This review is also limited by the fact that many of the studies used culture to identify pathogens. Culture may be less than ideally sensitive to the presence of specific pathogens because of factors such as prior antibiotic use or other difficulties in culturing pathogens. In recent years, PCR has been applied to identify the pneumococci causing CPP and to identify serotypes in culture-negative specimens [32, 59, 64, 84, 87, 93]. As antibiotic treatment may reduce the likelihood of detecting bacteria via culture, PCR is useful in detecting pneumococci in culture-negative samples from patients previously treated with antibiotics. For example, in a Spanish study of culture-negative pleural fluid specimens from children with empyema, PCR typing identified eight different serotypes (i.e., serotypes 1, 3, 5, 7F/7A, 8, 14, 19A, and 19F/B/C) in 52 of 67 culture-negative pleural fluid samples from children with PnEmp, with a sensitivity of 96.0 % and a specificity of 98.6 % [93]. Spanish pediatric empyema patients with S. pneumoniae culture-negative/PCR-positive samples were found to be significantly more likely to have received antibiotics than those with culture-positive samples (92 % vs. 53 %, respectively; p < 0.0001) [87]. Rapid pneumococcal antigen detection by means of immunochromatography has also been used to detect pneumococci in isolates from patients with empyema [51]. In hospitalized children with parapneumonic effusion, conventional microbiologic culture of pleural fluid samples detected pneumococci in 15 of 55 isolates, real-time PCR detected pneumococci in 13 of 16 culture-negative isolates (81.2 %), and immunochromatographic testing detected pneumococci in 24 of 27 culture-negative isolates (88.9 %) [51]. Such molecular methods may complete the information available on changes in the IPD and CPP serotype epidemiology over time.
Finally, most of the studies reviewed here used retrospective database analyses to identify cases of CPP and PnEmp. The specificity of information in these databases could vary, as cases may have been missed due to misclassification. In recent years, increased awareness of CPP and PnEmp has led to prospective surveillance studies, which may enhance disease identification. In addition, studies used different breakpoints to determine penicillin sensitivity, making it difficult to compare antibiotic resistance results.
In conclusion, the reported proportion of cases of CPP and PnEmp due to non-PCV7 serotypes has increased over the past several decades in countries that introduced PCV7 into the pediatric immunization program. Whether this increase reflects the advent and wider use of more specific diagnostic methods and increased awareness due to research initiatives, or if it, indeed, represents a true increase in disease incidence, is unclear. Several factors may account for these greater proportions, including enhanced disease detection due to a higher index of suspicion and more sophisticated diagnostic assays, as well as the prevalence of certain non-PCV7 serotypes that are capable of invading the pleural space.
It is established that reductions in the proportion of PCV7 serotype CPP have been observed in countries using PCV7. Most serotypes associated with CPP and PnEmp—particularly serotypes 1, 19A, 3, and 7F—are targeted by PCV13, which was registered for pediatric vaccination from 2009 and for adult vaccination from 2011. Early reports suggest declines in the incidence and proportion of cases of vaccine serotype CPP post-PCV7 introduction, and then further with PCV13, although studies are ongoing.

Acknowledgments

Medical writing support was provided by Vicki Schwartz, PhD, of Excerpta Medica and was funded by Pfizer Inc.

Conflict of interest

The authors are employees of Pfizer Inc.
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat World Health Organization (WHO) (2008) 23-valent pneumococcal polysaccharide vaccine. WHO position paper. Wkly Epidemiol Rec 83:373–384 World Health Organization (WHO) (2008) 23-valent pneumococcal polysaccharide vaccine. WHO position paper. Wkly Epidemiol Rec 83:373–384
3.
Zurück zum Zitat Sahn SA (2007) Diagnosis and management of parapneumonic effusions and empyema. Clin Infect Dis 45:1480–1486PubMedCrossRef Sahn SA (2007) Diagnosis and management of parapneumonic effusions and empyema. Clin Infect Dis 45:1480–1486PubMedCrossRef
4.
Zurück zum Zitat Spencer DA, Cliff D (2008) The changing epidemiology of parapneumonic empyema in children. Paediatr Child Health 18:513–518CrossRef Spencer DA, Cliff D (2008) The changing epidemiology of parapneumonic empyema in children. Paediatr Child Health 18:513–518CrossRef
5.
Zurück zum Zitat Balfour-Lynn IM, Abrahamson E, Cohen G, Hartley J, King S, Parikh D et al; Paediatric Pleural Diseases Subcommittee of the BTS Standards of Care Committee (2005) BTS guidelines for the management of pleural infection in children. Thorax 60:i1–i21PubMedCrossRefPubMedCentral Balfour-Lynn IM, Abrahamson E, Cohen G, Hartley J, King S, Parikh D et al; Paediatric Pleural Diseases Subcommittee of the BTS Standards of Care Committee (2005) BTS guidelines for the management of pleural infection in children. Thorax 60:i1–i21PubMedCrossRefPubMedCentral
6.
Zurück zum Zitat Lisboa T, Waterer GW, Lee YCG (2011) Pleural infection: changing bacteriology and its implications. Respirology 16:598–603PubMedCrossRef Lisboa T, Waterer GW, Lee YCG (2011) Pleural infection: changing bacteriology and its implications. Respirology 16:598–603PubMedCrossRef
7.
Zurück zum Zitat Buckingham SC, King MD, Miller ML (2003) Incidence and etiologies of complicated parapneumonic effusions in children, 1996 to 2001. Pediatr Infect Dis J 22:499–504PubMed Buckingham SC, King MD, Miller ML (2003) Incidence and etiologies of complicated parapneumonic effusions in children, 1996 to 2001. Pediatr Infect Dis J 22:499–504PubMed
8.
Zurück zum Zitat Eastham KM, Freeman R, Kearns AM, Eltringham G, Clark J, Leeming J et al (2004) Clinical features, aetiology and outcome of empyema in children in the north east of England. Thorax 59:522–525PubMedCrossRefPubMedCentral Eastham KM, Freeman R, Kearns AM, Eltringham G, Clark J, Leeming J et al (2004) Clinical features, aetiology and outcome of empyema in children in the north east of England. Thorax 59:522–525PubMedCrossRefPubMedCentral
9.
Zurück zum Zitat Hsieh YC, Hsueh PR, Lu CY, Lee PI, Lee CY, Huang LM (2004) Clinical manifestations and molecular epidemiology of necrotizing pneumonia and empyema caused by Streptococcus pneumoniae in children in Taiwan. Clin Infect Dis 38:830–835PubMedCrossRef Hsieh YC, Hsueh PR, Lu CY, Lee PI, Lee CY, Huang LM (2004) Clinical manifestations and molecular epidemiology of necrotizing pneumonia and empyema caused by Streptococcus pneumoniae in children in Taiwan. Clin Infect Dis 38:830–835PubMedCrossRef
10.
Zurück zum Zitat Byington CL, Samore MH, Stoddard GJ, Barlow S, Daly J, Korgenski K et al (2005) Temporal trends of invasive disease due to Streptococcus pneumoniae among children in the intermountain west: emergence of nonvaccine serogroups. Clin Infect Dis 41:21–29PubMedCrossRef Byington CL, Samore MH, Stoddard GJ, Barlow S, Daly J, Korgenski K et al (2005) Temporal trends of invasive disease due to Streptococcus pneumoniae among children in the intermountain west: emergence of nonvaccine serogroups. Clin Infect Dis 41:21–29PubMedCrossRef
11.
Zurück zum Zitat Lin CJ, Chen PY, Huang FL, Lee T, Chi CS, Lin CY (2006) Radiographic, clinical, and prognostic features of complicated and uncomplicated community-acquired lobar pneumonia in children. J Microbiol Immunol Infect 39:489–495PubMed Lin CJ, Chen PY, Huang FL, Lee T, Chi CS, Lin CY (2006) Radiographic, clinical, and prognostic features of complicated and uncomplicated community-acquired lobar pneumonia in children. J Microbiol Immunol Infect 39:489–495PubMed
12.
Zurück zum Zitat Muñoz-Almagro C, Jordan I, Gene A, Latorre C, Garcia-Garcia JJ, Pallares R (2008) Emergence of invasive pneumococcal disease caused by nonvaccine serotypes in the era of 7-valent conjugate vaccine. Clin Infect Dis 46:174–182PubMedCrossRef Muñoz-Almagro C, Jordan I, Gene A, Latorre C, Garcia-Garcia JJ, Pallares R (2008) Emergence of invasive pneumococcal disease caused by nonvaccine serotypes in the era of 7-valent conjugate vaccine. Clin Infect Dis 46:174–182PubMedCrossRef
13.
Zurück zum Zitat Nyambat B, Kilgore PE, Yong DE, Anh DD, Chiu CH, Shen X et al (2008) Survey of childhood empyema in Asia: implications for detecting the unmeasured burden of culture-negative bacterial disease. BMC Infect Dis 8:90PubMedCrossRefPubMedCentral Nyambat B, Kilgore PE, Yong DE, Anh DD, Chiu CH, Shen X et al (2008) Survey of childhood empyema in Asia: implications for detecting the unmeasured burden of culture-negative bacterial disease. BMC Infect Dis 8:90PubMedCrossRefPubMedCentral
14.
Zurück zum Zitat Goldbart AD, Leibovitz E, Porat N, Givon-Lavi N, Drukmann I, Tal A et al (2009) Complicated community acquired pneumonia in children prior to the introduction of the pneumococcal conjugated vaccine. Scand J Infect Dis 41:182–187PubMedCrossRef Goldbart AD, Leibovitz E, Porat N, Givon-Lavi N, Drukmann I, Tal A et al (2009) Complicated community acquired pneumonia in children prior to the introduction of the pneumococcal conjugated vaccine. Scand J Infect Dis 41:182–187PubMedCrossRef
15.
Zurück zum Zitat Hernández-Bou S, García-García JJ, Esteva C, Gené A, Luaces C, Muñoz Almagro C (2009) Pediatric parapneumonic pleural effusion: epidemiology, clinical characteristics, and microbiological diagnosis. Pediatr Pulmol 44:1192–1200CrossRef Hernández-Bou S, García-García JJ, Esteva C, Gené A, Luaces C, Muñoz Almagro C (2009) Pediatric parapneumonic pleural effusion: epidemiology, clinical characteristics, and microbiological diagnosis. Pediatr Pulmol 44:1192–1200CrossRef
16.
Zurück zum Zitat Grijalva CG, Nuorti JP, Zhu Y, Griffin MR (2010) Increasing incidence of empyema complicating childhood community-acquired pneumonia in the United States. Clin Infect Dis 50:805–813PubMedCrossRef Grijalva CG, Nuorti JP, Zhu Y, Griffin MR (2010) Increasing incidence of empyema complicating childhood community-acquired pneumonia in the United States. Clin Infect Dis 50:805–813PubMedCrossRef
17.
Zurück zum Zitat Burgos J, Lujan M, Falcó V, Sánchez A, Puig M, Borrego A et al (2011) The spectrum of pneumococcal empyema in adults in the early 21st century. Clin Infect Dis 53:254–261PubMedCrossRef Burgos J, Lujan M, Falcó V, Sánchez A, Puig M, Borrego A et al (2011) The spectrum of pneumococcal empyema in adults in the early 21st century. Clin Infect Dis 53:254–261PubMedCrossRef
18.
Zurück zum Zitat Ampofo K, Pavia AT, Chris S, Hersh AL, Bender JM, Blaschke AJ et al (2012) The changing epidemiology of invasive pneumococcal disease at a tertiary children’s hospital through the 7-valent pneumococcal conjugate vaccine era: a case for continuous surveillance. Pediatr Infect Dis J 31:228–234PubMedCrossRef Ampofo K, Pavia AT, Chris S, Hersh AL, Bender JM, Blaschke AJ et al (2012) The changing epidemiology of invasive pneumococcal disease at a tertiary children’s hospital through the 7-valent pneumococcal conjugate vaccine era: a case for continuous surveillance. Pediatr Infect Dis J 31:228–234PubMedCrossRef
19.
Zurück zum Zitat Strachan RE, Snelling TL, Jaffé A (2013) Increased paediatric hospitalizations for empyema in Australia after introduction of the 7-valent pneumococcal conjugate vaccine. Bull World Health Organ 91:167–173PubMedCrossRefPubMedCentral Strachan RE, Snelling TL, Jaffé A (2013) Increased paediatric hospitalizations for empyema in Australia after introduction of the 7-valent pneumococcal conjugate vaccine. Bull World Health Organ 91:167–173PubMedCrossRefPubMedCentral
20.
21.
Zurück zum Zitat Moberley S, Holden J, Tatham DP, Andrews RM (2013) Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev 1:CD000422PubMed Moberley S, Holden J, Tatham DP, Andrews RM (2013) Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev 1:CD000422PubMed
22.
Zurück zum Zitat McIntosh ED, Reinert RR (2011) Global prevailing and emerging pneumococcal serotypes. Expert Rev Vaccines 10:109–129PubMedCrossRef McIntosh ED, Reinert RR (2011) Global prevailing and emerging pneumococcal serotypes. Expert Rev Vaccines 10:109–129PubMedCrossRef
23.
Zurück zum Zitat Centers for Disease Control and Prevention (CDC) (2008) Invasive pneumococcal disease in children 5 years after conjugate vaccine introduction—eight states, 1998–2005. MMWR Morb Mortal Wkly Rep 57:144–148 Centers for Disease Control and Prevention (CDC) (2008) Invasive pneumococcal disease in children 5 years after conjugate vaccine introduction—eight states, 1998–2005. MMWR Morb Mortal Wkly Rep 57:144–148
24.
Zurück zum Zitat Harboe ZB, Valentiner-Branth P, Ingels H, Rasmussen JN, Andersen PH, Bjerre CC et al (2013) Pediatric invasive pneumococcal disease caused by vaccine serotypes following the introduction of conjugate vaccination in Denmark. PLoS One 8:e51460PubMedCrossRefPubMedCentral Harboe ZB, Valentiner-Branth P, Ingels H, Rasmussen JN, Andersen PH, Bjerre CC et al (2013) Pediatric invasive pneumococcal disease caused by vaccine serotypes following the introduction of conjugate vaccination in Denmark. PLoS One 8:e51460PubMedCrossRefPubMedCentral
25.
Zurück zum Zitat Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM et al (2010) Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis 201:32–41PubMedCrossRef Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM et al (2010) Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis 201:32–41PubMedCrossRef
26.
Zurück zum Zitat Hanquet G, Kissling E, Fenoll A, George R, Lepoutre A, Lernout T et al (2010) Pneumococcal serotypes in children in 4 European countries. Emerg Infect Dis 16:1428–1439PubMedCrossRefPubMedCentral Hanquet G, Kissling E, Fenoll A, George R, Lepoutre A, Lernout T et al (2010) Pneumococcal serotypes in children in 4 European countries. Emerg Infect Dis 16:1428–1439PubMedCrossRefPubMedCentral
27.
Zurück zum Zitat Vestrheim DF, Høiby EA, Bergsaker MR, Rønning K, Aaberge IS, Caugant DA (2010) Indirect effect of conjugate pneumococcal vaccination in a 2 + 1 dose schedule. Vaccine 28:2214–2221PubMedCrossRef Vestrheim DF, Høiby EA, Bergsaker MR, Rønning K, Aaberge IS, Caugant DA (2010) Indirect effect of conjugate pneumococcal vaccination in a 2 + 1 dose schedule. Vaccine 28:2214–2221PubMedCrossRef
28.
Zurück zum Zitat Fenoll A, Granizo JJ, Aguilar L, Giménez MJ, Aragoneses-Fenoll L, Hanquet G et al (2009) Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. J Clin Microbiol 47:1012–1020PubMedCrossRefPubMedCentral Fenoll A, Granizo JJ, Aguilar L, Giménez MJ, Aragoneses-Fenoll L, Hanquet G et al (2009) Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. J Clin Microbiol 47:1012–1020PubMedCrossRefPubMedCentral
29.
Zurück zum Zitat Ihekweazu CA, Dance DA, Pebody R, George RC, Smith MD, Waight P et al (2008) Trends in incidence of pneumococcal disease before introduction of conjugate vaccine: South West England, 1996–2005. Epidemiol Infect 136:1096–1102PubMedCrossRefPubMedCentral Ihekweazu CA, Dance DA, Pebody R, George RC, Smith MD, Waight P et al (2008) Trends in incidence of pneumococcal disease before introduction of conjugate vaccine: South West England, 1996–2005. Epidemiol Infect 136:1096–1102PubMedCrossRefPubMedCentral
30.
Zurück zum Zitat Byington CL, Spencer LY, Johnson TA, Pavia AT, Allen D, Mason EO et al (2002) An epidemiological investigation of a sustained high rate of pediatric parapneumonic empyema: risk factors and microbiological associations. Clin Infect Dis 34:434–440PubMedCrossRef Byington CL, Spencer LY, Johnson TA, Pavia AT, Allen D, Mason EO et al (2002) An epidemiological investigation of a sustained high rate of pediatric parapneumonic empyema: risk factors and microbiological associations. Clin Infect Dis 34:434–440PubMedCrossRef
31.
Zurück zum Zitat Byington CL, Hulten KG, Ampofo K, Sheng X, Pavia AT, Blaschke AJ et al (2010) Molecular epidemiology of pediatric pneumococcal empyema from 2001 to 2007 in Utah. J Clin Microbiol 48:520–525PubMedCrossRefPubMedCentral Byington CL, Hulten KG, Ampofo K, Sheng X, Pavia AT, Blaschke AJ et al (2010) Molecular epidemiology of pediatric pneumococcal empyema from 2001 to 2007 in Utah. J Clin Microbiol 48:520–525PubMedCrossRefPubMedCentral
32.
Zurück zum Zitat Resti M, Moriondo M, Cortimiglia M, Indolfi G, Canessa C, Becciolini L et al (2010) Community-acquired bacteremic pneumococcal pneumonia in children: diagnosis and serotyping by real-time polymerase chain reaction using blood samples. Clin Infect Dis 51:1042–1049PubMedCrossRef Resti M, Moriondo M, Cortimiglia M, Indolfi G, Canessa C, Becciolini L et al (2010) Community-acquired bacteremic pneumococcal pneumonia in children: diagnosis and serotyping by real-time polymerase chain reaction using blood samples. Clin Infect Dis 51:1042–1049PubMedCrossRef
33.
Zurück zum Zitat Wexler ID, Knoll S, Picard E, Villa Y, Shoseyov D, Engelhard D et al (2006) Clinical characteristics and outcome of complicated pneumococcal pneumonia in a pediatric population. Pediatr Pulmonol 41:726–734PubMedCrossRef Wexler ID, Knoll S, Picard E, Villa Y, Shoseyov D, Engelhard D et al (2006) Clinical characteristics and outcome of complicated pneumococcal pneumonia in a pediatric population. Pediatr Pulmonol 41:726–734PubMedCrossRef
34.
Zurück zum Zitat Tan TQ, Mason EO Jr, Wald ER, Barson WJ, Schutze GE, Bradley JS et al (2002) Clinical characteristics of children with complicated pneumonia caused by Streptococcus pneumoniae. Pediatrics 110:1–6PubMedCrossRef Tan TQ, Mason EO Jr, Wald ER, Barson WJ, Schutze GE, Bradley JS et al (2002) Clinical characteristics of children with complicated pneumonia caused by Streptococcus pneumoniae. Pediatrics 110:1–6PubMedCrossRef
35.
Zurück zum Zitat Bender JM, Ampofo K, Korgenski K, Daly J, Pavia AT, Mason EO et al (2008) Pneumococcal necrotizing pneumonia in Utah: does serotype matter? Clin Infect Dis 46:1346–1352PubMedCrossRefPubMedCentral Bender JM, Ampofo K, Korgenski K, Daly J, Pavia AT, Mason EO et al (2008) Pneumococcal necrotizing pneumonia in Utah: does serotype matter? Clin Infect Dis 46:1346–1352PubMedCrossRefPubMedCentral
36.
Zurück zum Zitat Yoshioka CR, Martinez MB, Brandileone MC, Ragazzi SB, Guerra ML, Santos SR et al (2011) Analysis of invasive pneumonia-causing strains of Streptococcus pneumoniae: serotypes and antimicrobial susceptibility. J Pediatria (Rio J) 87:70–75 Yoshioka CR, Martinez MB, Brandileone MC, Ragazzi SB, Guerra ML, Santos SR et al (2011) Analysis of invasive pneumonia-causing strains of Streptococcus pneumoniae: serotypes and antimicrobial susceptibility. J Pediatria (Rio J) 87:70–75
37.
Zurück zum Zitat Esposito S, Marchese A, Tozzi AE, Rossi GA, Da Dalt L, Bona G et al (2012) Bacteremic pneumococcal community-acquired pneumonia in children less than 5 years of age in Italy. Pediatr Infect Dis J 31:705–710PubMedCrossRef Esposito S, Marchese A, Tozzi AE, Rossi GA, Da Dalt L, Bona G et al (2012) Bacteremic pneumococcal community-acquired pneumonia in children less than 5 years of age in Italy. Pediatr Infect Dis J 31:705–710PubMedCrossRef
38.
Zurück zum Zitat Vallès X, Marcos A, Pinart M, Piñer R, Marco F, Mensa JM et al (2006) Hospitalized community-acquired pneumonia due to Streptococcus pneumoniae: has resistance to antibiotics decreased? Chest 130:800–806PubMedCrossRef Vallès X, Marcos A, Pinart M, Piñer R, Marco F, Mensa JM et al (2006) Hospitalized community-acquired pneumonia due to Streptococcus pneumoniae: has resistance to antibiotics decreased? Chest 130:800–806PubMedCrossRef
39.
Zurück zum Zitat Cillóniz C, Ewig S, Polverino E, Muñoz-Almagro C, Marco F, Gabarrús A et al (2012) Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes. Clin Microbiol Infect 18:1134–1142PubMedCrossRef Cillóniz C, Ewig S, Polverino E, Muñoz-Almagro C, Marco F, Gabarrús A et al (2012) Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes. Clin Microbiol Infect 18:1134–1142PubMedCrossRef
40.
Zurück zum Zitat Pande A, Nasir S, Rueda AM, Matejowsky R, Ramos J, Doshi S et al (2012) The incidence of necrotizing changes in adults with pneumococcal pneumonia. Clin Infect Dis 54:10–16PubMedCrossRef Pande A, Nasir S, Rueda AM, Matejowsky R, Ramos J, Doshi S et al (2012) The incidence of necrotizing changes in adults with pneumococcal pneumonia. Clin Infect Dis 54:10–16PubMedCrossRef
41.
Zurück zum Zitat Chong CY, Koh-Cheng T, Yee-Hui M, Nancy TW (2008) Invasive pneumococcal disease in Singapore children. Vaccine 26:3427–3431PubMedCrossRef Chong CY, Koh-Cheng T, Yee-Hui M, Nancy TW (2008) Invasive pneumococcal disease in Singapore children. Vaccine 26:3427–3431PubMedCrossRef
42.
Zurück zum Zitat Aguiar SI, Brito MJ, Gonçalo-Marques J, Melo-Cristino J, Ramirez M (2010) Serotypes 1, 7F and 19A became the leading causes of pediatric invasive pneumococcal infections in Portugal after 7 years of heptavalent conjugate vaccine use. Vaccine 28:5167–5173PubMedCrossRef Aguiar SI, Brito MJ, Gonçalo-Marques J, Melo-Cristino J, Ramirez M (2010) Serotypes 1, 7F and 19A became the leading causes of pediatric invasive pneumococcal infections in Portugal after 7 years of heptavalent conjugate vaccine use. Vaccine 28:5167–5173PubMedCrossRef
43.
Zurück zum Zitat Picazo J, Ruiz-Contreras J, Casado-Flores J, Giangaspro E, Del Castillo F, Hernández-Sampelayo T et al (2011) Relationship between serotypes, age, and clinical presentation of invasive pneumococcal disease in Madrid, Spain, after introduction of the 7-valent pneumococcal conjugate vaccine into the vaccination calendar. Clin Vaccine Immunol 18:89–94PubMedCrossRefPubMedCentral Picazo J, Ruiz-Contreras J, Casado-Flores J, Giangaspro E, Del Castillo F, Hernández-Sampelayo T et al (2011) Relationship between serotypes, age, and clinical presentation of invasive pneumococcal disease in Madrid, Spain, after introduction of the 7-valent pneumococcal conjugate vaccine into the vaccination calendar. Clin Vaccine Immunol 18:89–94PubMedCrossRefPubMedCentral
44.
Zurück zum Zitat Ciruela P, Soldevila N, Selva L, Hernández S, Garcia-Garcia JJ, Moraga F et al (2013) Are risk factors associated with invasive pneumococcal disease according to different serotypes? Hum Vaccin Immunother 9:712–719CrossRefPubMedCentral Ciruela P, Soldevila N, Selva L, Hernández S, Garcia-Garcia JJ, Moraga F et al (2013) Are risk factors associated with invasive pneumococcal disease according to different serotypes? Hum Vaccin Immunother 9:712–719CrossRefPubMedCentral
45.
Zurück zum Zitat Chacon-Cruz E, Velazco-Mendez Y, Navarro-Alvarez S, Rivas-Landeros RM, Volker ML, Lopez-Espinoza G (2012) Pneumococcal disease: emergence of serotypes 19A and 7F following conjugate pneumococcal vaccination in a Mexican hospital. J Infect Dev Ctries 6:516–520PubMedCrossRef Chacon-Cruz E, Velazco-Mendez Y, Navarro-Alvarez S, Rivas-Landeros RM, Volker ML, Lopez-Espinoza G (2012) Pneumococcal disease: emergence of serotypes 19A and 7F following conjugate pneumococcal vaccination in a Mexican hospital. J Infect Dev Ctries 6:516–520PubMedCrossRef
46.
Zurück zum Zitat Picazo J, Ruiz-Contreras J, Casado-Flores J, Giangaspro E, García-de-Miguel MJ, Hernández-Sampelayo T et al (2013) Impact of introduction of conjugate vaccines in the vaccination schedule on the incidence of pediatric invasive pneumococcal disease requiring hospitalization in Madrid 2007 to 2011. Pediatr Infect Dis J 32:656–661PubMedCrossRef Picazo J, Ruiz-Contreras J, Casado-Flores J, Giangaspro E, García-de-Miguel MJ, Hernández-Sampelayo T et al (2013) Impact of introduction of conjugate vaccines in the vaccination schedule on the incidence of pediatric invasive pneumococcal disease requiring hospitalization in Madrid 2007 to 2011. Pediatr Infect Dis J 32:656–661PubMedCrossRef
47.
Zurück zum Zitat Grau I, Ardanuy C, Calatayud L, Rolo D, Domenech A, Liñares J et al (2012) Invasive pneumococcal disease in healthy adults: increase of empyema associated with the clonal-type Sweden(1)-ST306. PLoS One 7:e42595PubMedCrossRefPubMedCentral Grau I, Ardanuy C, Calatayud L, Rolo D, Domenech A, Liñares J et al (2012) Invasive pneumococcal disease in healthy adults: increase of empyema associated with the clonal-type Sweden(1)-ST306. PLoS One 7:e42595PubMedCrossRefPubMedCentral
48.
Zurück zum Zitat Shen CF, Wang SM, Lee KH, Ho TS, Liu CC (2013) Childhood invasive pneumococcal disease caused by non-7-valent pneumococcal vaccine (PCV7) serotypes under partial immunization in Taiwan. J Formos Med Assoc 112:561–568PubMedCrossRef Shen CF, Wang SM, Lee KH, Ho TS, Liu CC (2013) Childhood invasive pneumococcal disease caused by non-7-valent pneumococcal vaccine (PCV7) serotypes under partial immunization in Taiwan. J Formos Med Assoc 112:561–568PubMedCrossRef
49.
Zurück zum Zitat Picazo J, Ruiz-Contreras J, Casado-Flores J, Negreira S, García-de-Miguel M-J, Hernández-Sampelayo T et al (2013) Expansion of serotype coverage in the universal pediatric vaccination calendar: short-term effects on age- and serotype-dependent incidence of invasive pneumococcal clinical presentations in Madrid, Spain. Clin Vaccine Immunol 20:1524–1530PubMedCrossRefPubMedCentral Picazo J, Ruiz-Contreras J, Casado-Flores J, Negreira S, García-de-Miguel M-J, Hernández-Sampelayo T et al (2013) Expansion of serotype coverage in the universal pediatric vaccination calendar: short-term effects on age- and serotype-dependent incidence of invasive pneumococcal clinical presentations in Madrid, Spain. Clin Vaccine Immunol 20:1524–1530PubMedCrossRefPubMedCentral
50.
Zurück zum Zitat Chibuk TK, Robinson JL, Hartfield DS (2010) Pediatric complicated pneumonia and pneumococcal serotype replacement: trends in hospitalized children pre and post introduction of routine vaccination with Pneumococcal Conjugate Vaccine (PCV7). Eur J Pediatr 169:1123–1128PubMedCrossRef Chibuk TK, Robinson JL, Hartfield DS (2010) Pediatric complicated pneumonia and pneumococcal serotype replacement: trends in hospitalized children pre and post introduction of routine vaccination with Pneumococcal Conjugate Vaccine (PCV7). Eur J Pediatr 169:1123–1128PubMedCrossRef
51.
Zurück zum Zitat Martinón-Torres F, Dosil-Gallardo S, Perez del Molino-Bernal ML, Sánchez FP, Tarrago D, Alvez F et al (2012) Pleural antigen assay in the diagnosis of pediatric pneumococcal empyema. J Crit Care 27:321.e1–321.e4 Martinón-Torres F, Dosil-Gallardo S, Perez del Molino-Bernal ML, Sánchez FP, Tarrago D, Alvez F et al (2012) Pleural antigen assay in the diagnosis of pediatric pneumococcal empyema. J Crit Care 27:321.e1–321.e4
52.
Zurück zum Zitat Masson A, Ménetrey C, Garnier F, Bahans C, Fargeot A, Layadi M et al (2011) Parapneumonic pleural effusion incidence in a French region before and during the antipneumococcal vaccine era. Arch Pediatr 18:846–849PubMedCrossRef Masson A, Ménetrey C, Garnier F, Bahans C, Fargeot A, Layadi M et al (2011) Parapneumonic pleural effusion incidence in a French region before and during the antipneumococcal vaccine era. Arch Pediatr 18:846–849PubMedCrossRef
53.
Zurück zum Zitat Lin TY, Hwang KP, Liu CC, Tang RB, Lin CY, Gilbert GL et al (2013) Etiology of empyema thoracis and parapneumonic pleural effusion in Taiwanese children and adolescents younger than 18 years of age. Pediatr Infect Dis J 32:419–421PubMedCrossRef Lin TY, Hwang KP, Liu CC, Tang RB, Lin CY, Gilbert GL et al (2013) Etiology of empyema thoracis and parapneumonic pleural effusion in Taiwanese children and adolescents younger than 18 years of age. Pediatr Infect Dis J 32:419–421PubMedCrossRef
54.
Zurück zum Zitat Lee JH, Kim SH, Lee J, Choi EH, Lee HJ (2012) Diagnosis of pneumococcal empyema using immunochromatographic test on pleural fluid and serotype distribution in Korean children. Diagn Microbiol Infect Dis 72:119–124PubMedCrossRef Lee JH, Kim SH, Lee J, Choi EH, Lee HJ (2012) Diagnosis of pneumococcal empyema using immunochromatographic test on pleural fluid and serotype distribution in Korean children. Diagn Microbiol Infect Dis 72:119–124PubMedCrossRef
55.
Zurück zum Zitat Ramphul N, Eastham KM, Freeman R, Eltringham G, Kearns AM, Leeming JP et al (2006) Cavitatory lung disease complicating empyema in children. Pediatr Pulmonol 41:750–753PubMedCrossRef Ramphul N, Eastham KM, Freeman R, Eltringham G, Kearns AM, Leeming JP et al (2006) Cavitatory lung disease complicating empyema in children. Pediatr Pulmonol 41:750–753PubMedCrossRef
56.
Zurück zum Zitat Langley JM, Kellner JD, Solomon N, Robinson JL, Le Saux N, McDonald J et al (2008) Empyema associated with community-acquired pneumonia: a Pediatric Investigator’s Collaborative Network on Infections in Canada (PICNIC) study. BMC Infect Dis 8:129PubMedCrossRefPubMedCentral Langley JM, Kellner JD, Solomon N, Robinson JL, Le Saux N, McDonald J et al (2008) Empyema associated with community-acquired pneumonia: a Pediatric Investigator’s Collaborative Network on Infections in Canada (PICNIC) study. BMC Infect Dis 8:129PubMedCrossRefPubMedCentral
57.
Zurück zum Zitat Roxburgh CS, Youngson GG (2007) Childhood empyema in North-East Scotland over the past 15 years. Scott Med J 52:25–27PubMedCrossRef Roxburgh CS, Youngson GG (2007) Childhood empyema in North-East Scotland over the past 15 years. Scott Med J 52:25–27PubMedCrossRef
58.
Zurück zum Zitat Strachan RE, Cornelius A, Gilbert GL, Gulliver T, Martin A, McDonald T et al (2011) Bacterial causes of empyema in children, Australia, 2007–2009. Emerg Infect Dis 17:1839–1845PubMedCrossRefPubMedCentral Strachan RE, Cornelius A, Gilbert GL, Gulliver T, Martin A, McDonald T et al (2011) Bacterial causes of empyema in children, Australia, 2007–2009. Emerg Infect Dis 17:1839–1845PubMedCrossRefPubMedCentral
59.
Zurück zum Zitat Strachan RE, Cornelius A, Gilbert GL, Gulliver T, Martin A, McDonald T et al (2012) Pleural fluid nucleic acid testing enhances pneumococcal surveillance in children. Respirology 17:114–119PubMedCrossRef Strachan RE, Cornelius A, Gilbert GL, Gulliver T, Martin A, McDonald T et al (2012) Pleural fluid nucleic acid testing enhances pneumococcal surveillance in children. Respirology 17:114–119PubMedCrossRef
60.
Zurück zum Zitat Ceyhan M, Ozsurekci Y, Gürler N, Ozkan S, Sensoy G, Belet N et al (2013) Distribution of Streptococcus pneumoniae serotypes that cause parapneumonic empyema in Turkey. Clin Vaccine Immunol 20:972–976PubMedCrossRefPubMedCentral Ceyhan M, Ozsurekci Y, Gürler N, Ozkan S, Sensoy G, Belet N et al (2013) Distribution of Streptococcus pneumoniae serotypes that cause parapneumonic empyema in Turkey. Clin Vaccine Immunol 20:972–976PubMedCrossRefPubMedCentral
61.
Zurück zum Zitat Grijalva CG, Zhu Y, Nuorti JP, Griffin MR (2011) Emergence of parapneumonic empyema in the USA. Thorax 66:663–668PubMedCrossRef Grijalva CG, Zhu Y, Nuorti JP, Griffin MR (2011) Emergence of parapneumonic empyema in the USA. Thorax 66:663–668PubMedCrossRef
62.
Zurück zum Zitat McKee AJ, Ives A, Balfour-Lynn IM (2011) Increased incidence of bronchopulmonary fistulas complicating pediatric pneumonia. Pediatr Pulmonol 46:717–721PubMedCrossRef McKee AJ, Ives A, Balfour-Lynn IM (2011) Increased incidence of bronchopulmonary fistulas complicating pediatric pneumonia. Pediatr Pulmonol 46:717–721PubMedCrossRef
63.
Zurück zum Zitat Burgos J, Falcó V, Borrego A, Sordé R, Larrosa MN, Martinez X et al (2013) Impact of the emergence of non-vaccine pneumococcal serotypes on the clinical presentation and outcome of adults with invasive pneumococcal pneumonia. Clin Microbiol Infect 19:385–391PubMedCrossRef Burgos J, Falcó V, Borrego A, Sordé R, Larrosa MN, Martinez X et al (2013) Impact of the emergence of non-vaccine pneumococcal serotypes on the clinical presentation and outcome of adults with invasive pneumococcal pneumonia. Clin Microbiol Infect 19:385–391PubMedCrossRef
64.
Zurück zum Zitat Blaschke AJ, Heyrend C, Byington CL, Obando I, Vazquez-Barba I, Doby EH et al (2011) Molecular analysis improves pathogen identification and epidemiologic study of pediatric parapneumonic empyema. Pediatr Infect Dis J 30:289–294PubMedCrossRefPubMedCentral Blaschke AJ, Heyrend C, Byington CL, Obando I, Vazquez-Barba I, Doby EH et al (2011) Molecular analysis improves pathogen identification and epidemiologic study of pediatric parapneumonic empyema. Pediatr Infect Dis J 30:289–294PubMedCrossRefPubMedCentral
65.
Zurück zum Zitat Eltringham G, Kearns A, Freeman R, Clark J, Spencer D, Eastham K et al (2003) Culture-negative childhood empyema is usually due to penicillin-sensitive Streptococcus pneumoniae capsular serotype 1. J Clin Microbiol 41:521–522PubMedCrossRefPubMedCentral Eltringham G, Kearns A, Freeman R, Clark J, Spencer D, Eastham K et al (2003) Culture-negative childhood empyema is usually due to penicillin-sensitive Streptococcus pneumoniae capsular serotype 1. J Clin Microbiol 41:521–522PubMedCrossRefPubMedCentral
66.
Zurück zum Zitat Hortal M, Sehabiague G, Camou T, Iraola I, Estevan M, Pujadas M (2008) Pneumococcal pneumonia in hospitalized Uruguayan children and potential prevention with different vaccine formulations. J Pediatr 152:850–853PubMedCrossRef Hortal M, Sehabiague G, Camou T, Iraola I, Estevan M, Pujadas M (2008) Pneumococcal pneumonia in hospitalized Uruguayan children and potential prevention with different vaccine formulations. J Pediatr 152:850–853PubMedCrossRef
67.
Zurück zum Zitat Yu J, Salamon D, Marcon M, Nahm MH (2011) Pneumococcal serotypes causing pneumonia with pleural effusion in pediatric patients. J Clin Microbiol 49:534–538PubMedCrossRefPubMedCentral Yu J, Salamon D, Marcon M, Nahm MH (2011) Pneumococcal serotypes causing pneumonia with pleural effusion in pediatric patients. J Clin Microbiol 49:534–538PubMedCrossRefPubMedCentral
68.
Zurück zum Zitat Esteva C, Selva L, de Sevilla MF, Garcia-Garcia JJ, Pallares R, Muñoz-Almagro C (2011) Streptococcus pneumoniae serotype 1 causing invasive disease among children in Barcelona over a 20-year period (1989–2008). Clin Microbiol Infect 17:1441–1444PubMed Esteva C, Selva L, de Sevilla MF, Garcia-Garcia JJ, Pallares R, Muñoz-Almagro C (2011) Streptococcus pneumoniae serotype 1 causing invasive disease among children in Barcelona over a 20-year period (1989–2008). Clin Microbiol Infect 17:1441–1444PubMed
69.
Zurück zum Zitat Fuchs I, Dagan R, Givon-Lavi N, Greenberg D (2013) Serotype childhood invasive pneumococcal disease has unique characteristics compared to disease caused by other Streptococcus pneumoniae serotypes. Pediatr Infect Dis 32:614–618CrossRef Fuchs I, Dagan R, Givon-Lavi N, Greenberg D (2013) Serotype childhood invasive pneumococcal disease has unique characteristics compared to disease caused by other Streptococcus pneumoniae serotypes. Pediatr Infect Dis 32:614–618CrossRef
70.
Zurück zum Zitat Hendrickson DJ, Blumberg DA, Joad JP, Jhawar S, McDonald RJ (2008) Five-fold increase in pediatric parapneumonic empyema since introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 27:1030–1032PubMedCrossRef Hendrickson DJ, Blumberg DA, Joad JP, Jhawar S, McDonald RJ (2008) Five-fold increase in pediatric parapneumonic empyema since introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 27:1030–1032PubMedCrossRef
71.
Zurück zum Zitat Luján M, Gallego M, Belmonte Y, Fontanals D, Vallès J, Lisboa T, Rello J (2010) Influence of pneumococcal serotype group on outcome in adults with bacteraemic pneumonia. Eur Respir J 36:1073–1079PubMedCrossRef Luján M, Gallego M, Belmonte Y, Fontanals D, Vallès J, Lisboa T, Rello J (2010) Influence of pneumococcal serotype group on outcome in adults with bacteraemic pneumonia. Eur Respir J 36:1073–1079PubMedCrossRef
72.
Zurück zum Zitat Bekri H, Cohen R, Varon E, Madhi F, Gire R, Guillot F et al (2007) Distribution des serotypes de pneumocoques responsables des pleuropneumopathies de l’enfant en France [Streptococcus pneumoniae serotypes involved in children with pleural empyemas in France]. Arch Pediatr 14:239–243PubMedCrossRef Bekri H, Cohen R, Varon E, Madhi F, Gire R, Guillot F et al (2007) Distribution des serotypes de pneumocoques responsables des pleuropneumopathies de l’enfant en France [Streptococcus pneumoniae serotypes involved in children with pleural empyemas in France]. Arch Pediatr 14:239–243PubMedCrossRef
73.
Zurück zum Zitat Byington CL, Korgenski K, Daly J, Ampofo K, Pavia A, Mason EO (2006) Impact of the pneumococcal conjugate vaccine on pneumococcal parapneumonic empyema. Pediatr Infect Dis J 25:250–254PubMedCrossRef Byington CL, Korgenski K, Daly J, Ampofo K, Pavia A, Mason EO (2006) Impact of the pneumococcal conjugate vaccine on pneumococcal parapneumonic empyema. Pediatr Infect Dis J 25:250–254PubMedCrossRef
74.
Zurück zum Zitat Cillóniz C, Ewig S, Polverino E, Muñoz-Almagro C, Marco F, Gabarrús A et al (2012) Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes. Clin Microbiol Infect 18:1134–1142PubMedCrossRef Cillóniz C, Ewig S, Polverino E, Muñoz-Almagro C, Marco F, Gabarrús A et al (2012) Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes. Clin Microbiol Infect 18:1134–1142PubMedCrossRef
75.
Zurück zum Zitat Elemraid MA, Sails AD, Thomas MF, Rushton SP, Perry JD, Eltringham GJ et al (2013) Pneumococcal diagnosis and serotypes in childhood community-acquired pneumonia. Diag Microbiol Infect Dis 76:129–132CrossRef Elemraid MA, Sails AD, Thomas MF, Rushton SP, Perry JD, Eltringham GJ et al (2013) Pneumococcal diagnosis and serotypes in childhood community-acquired pneumonia. Diag Microbiol Infect Dis 76:129–132CrossRef
76.
Zurück zum Zitat Ferrari CA, Pirez GM, Martínez AA, Algorta RG, Chamorro VF, Guala BM et al (2007) Etiology of community acquired pneumonia in inpatients children. Uruguay 1998–2004. Rev Chilena Infectol 24:40–47CrossRef Ferrari CA, Pirez GM, Martínez AA, Algorta RG, Chamorro VF, Guala BM et al (2007) Etiology of community acquired pneumonia in inpatients children. Uruguay 1998–2004. Rev Chilena Infectol 24:40–47CrossRef
77.
Zurück zum Zitat Gendrel D, Lecarpentier T, Menager C, Harroche A, Leguillou S, Vallet C et al (2011) Pneumococci isolated from vaccinated children with pneumonia. Arch Pediatr 18:518–521CrossRef Gendrel D, Lecarpentier T, Menager C, Harroche A, Leguillou S, Vallet C et al (2011) Pneumococci isolated from vaccinated children with pneumonia. Arch Pediatr 18:518–521CrossRef
78.
Zurück zum Zitat González Martínez F, Saavedra Lozano J, Navarro Gómez ML, Santos Sebastián MM, Rodríguez Fernández R, González Sánchez M et al (2013) Increase in the incidence of invasive pneumococcal disease caused by serotype 19A prior to the implementation of the expanded pneumococcal vaccines. An Pediatr (Barc) 79:288–292CrossRef González Martínez F, Saavedra Lozano J, Navarro Gómez ML, Santos Sebastián MM, Rodríguez Fernández R, González Sánchez M et al (2013) Increase in the incidence of invasive pneumococcal disease caused by serotype 19A prior to the implementation of the expanded pneumococcal vaccines. An Pediatr (Barc) 79:288–292CrossRef
79.
Zurück zum Zitat Grisaru-Soen G, Eisenstadt M, Paret G, Schwartz D, Keller N, Nagar H et al (2013) Pediatric parapneumonic empyema: risk factors, clinical characteristics, microbiology, and management. Pediatr Emerg Care 29:425–429PubMedCrossRef Grisaru-Soen G, Eisenstadt M, Paret G, Schwartz D, Keller N, Nagar H et al (2013) Pediatric parapneumonic empyema: risk factors, clinical characteristics, microbiology, and management. Pediatr Emerg Care 29:425–429PubMedCrossRef
80.
Zurück zum Zitat Hsieh Y-C, Hsiao C-H, Tsao P-N, Wang J-Y, Hsueh P-R, Chiang B-L et al (2006) Necrotizing pneumococcal pneumonia in children: the role of pulmonary gangrene. Pediatr Pulmonol 41:623–629PubMedCrossRef Hsieh Y-C, Hsiao C-H, Tsao P-N, Wang J-Y, Hsueh P-R, Chiang B-L et al (2006) Necrotizing pneumococcal pneumonia in children: the role of pulmonary gangrene. Pediatr Pulmonol 41:623–629PubMedCrossRef
81.
Zurück zum Zitat Kanungo R, Rajalakshmi B (2001) Serotype distribution & antimicrobial resistance in Streptococcus pneumoniae causing invasive & other infections in south India. Indian J Med Res 114:127–132PubMed Kanungo R, Rajalakshmi B (2001) Serotype distribution & antimicrobial resistance in Streptococcus pneumoniae causing invasive & other infections in south India. Indian J Med Res 114:127–132PubMed
82.
Zurück zum Zitat Kendall BA, Dascomb KK, Mehta RR, Mason EO, Ampofo K, Pombo DJ et al (2011) Streptococcus pneumoniae serotypes in Utah adults at the end of the PCV7 era. Vaccine 29:9123–9126PubMedCrossRef Kendall BA, Dascomb KK, Mehta RR, Mason EO, Ampofo K, Pombo DJ et al (2011) Streptococcus pneumoniae serotypes in Utah adults at the end of the PCV7 era. Vaccine 29:9123–9126PubMedCrossRef
83.
Zurück zum Zitat Lai CY, Huang LM, Lee PY, Lu CY, Shao PL, Chang LY (2012) Comparison of invasive pneumococcal disease caused by serotype 19A and non-19A pneumococci in children: More empyema in serotype 19A invasive pneumococcal disease. J Microbiol Immunol Infect. pii: S1684-1182(12)00172-7. doi:10.1016/j.jmii.2012.08.011 Lai CY, Huang LM, Lee PY, Lu CY, Shao PL, Chang LY (2012) Comparison of invasive pneumococcal disease caused by serotype 19A and non-19A pneumococci in children: More empyema in serotype 19A invasive pneumococcal disease. J Microbiol Immunol Infect. pii: S1684-1182(12)00172-7. doi:10.​1016/​j.​jmii.​2012.​08.​011
84.
Zurück zum Zitat Maataoui N, Bidet P, Doit C, De Lauzanne A, Lorrot M, Mariani-Kurkdjian P et al (2011) A multiplex polymerase chain reaction method for rapid pneumococcal serotype determination in childhood empyema. Diagn Microbiol Infect Dis 69:245–249PubMedCrossRef Maataoui N, Bidet P, Doit C, De Lauzanne A, Lorrot M, Mariani-Kurkdjian P et al (2011) A multiplex polymerase chain reaction method for rapid pneumococcal serotype determination in childhood empyema. Diagn Microbiol Infect Dis 69:245–249PubMedCrossRef
85.
Zurück zum Zitat Messina AF, Katz-Gaynor K, Barton T, Ahmad N, Ghaffar F, Rasko D, McCracken GH Jr (2007) Impact of the pneumococcal conjugate vaccine on serotype distribution and antimicrobial resistance of invasive Streptococcus pneumoniae isolates in Dallas, TX, children from 1999 through 2005. Pediatr Infect Dis J 26:461–467PubMedCrossRef Messina AF, Katz-Gaynor K, Barton T, Ahmad N, Ghaffar F, Rasko D, McCracken GH Jr (2007) Impact of the pneumococcal conjugate vaccine on serotype distribution and antimicrobial resistance of invasive Streptococcus pneumoniae isolates in Dallas, TX, children from 1999 through 2005. Pediatr Infect Dis J 26:461–467PubMedCrossRef
86.
Zurück zum Zitat Muñoz-Almagro C, Esteva C, de Sevilla MF, Selva L, Gene A, Pallares R (2009) Emergence of invasive pneumococcal disease caused by multidrug-resistant serotype 19A among children in Barcelona. J Infect 59:75–82PubMedCrossRef Muñoz-Almagro C, Esteva C, de Sevilla MF, Selva L, Gene A, Pallares R (2009) Emergence of invasive pneumococcal disease caused by multidrug-resistant serotype 19A among children in Barcelona. J Infect 59:75–82PubMedCrossRef
87.
Zurück zum Zitat Obando I, Muñoz-Almagro C, Arroyo LA, Tarrago D, Sanchez-Tatay D, Moreno-Perez D et al (2008) Pediatric parapneumonic empyema, Spain. Emerg Infect Dis 14:1390–1397PubMedCrossRefPubMedCentral Obando I, Muñoz-Almagro C, Arroyo LA, Tarrago D, Sanchez-Tatay D, Moreno-Perez D et al (2008) Pediatric parapneumonic empyema, Spain. Emerg Infect Dis 14:1390–1397PubMedCrossRefPubMedCentral
88.
Zurück zum Zitat Obando I, Camacho-Lovillo MS, Porras A, Gandía-González MA, Molinos A, Vazquez-Barba I et al (2012) Sustained high prevalence of pneumococcal serotype 1 in paediatric parapneumonic empyema in southern Spain from 2005 to 2009. Clin Microbiol Infect 18:763–768PubMedCrossRef Obando I, Camacho-Lovillo MS, Porras A, Gandía-González MA, Molinos A, Vazquez-Barba I et al (2012) Sustained high prevalence of pneumococcal serotype 1 in paediatric parapneumonic empyema in southern Spain from 2005 to 2009. Clin Microbiol Infect 18:763–768PubMedCrossRef
89.
Zurück zum Zitat Payeras A, Villoslada A, Garau M, Borras M, Pareja A, Beingolea D et al (2011) Pneumococcal pneumonia in the era of heptavalent pneumococcal conjugate vaccine. Enferm Infecc Microbiol Clin 29:250–256PubMedCrossRef Payeras A, Villoslada A, Garau M, Borras M, Pareja A, Beingolea D et al (2011) Pneumococcal pneumonia in the era of heptavalent pneumococcal conjugate vaccine. Enferm Infecc Microbiol Clin 29:250–256PubMedCrossRef
90.
Zurück zum Zitat Picazo J, Ruiz-Contreras J, Casado-Flores J, Negreira S, Del Castillo F, Hernández-Sampelayo T et al (2011) Laboratory-based, 2-year surveillance of pediatric parapneumonic pneumococcal empyema following heptavalent pneumococcal conjugate vaccine universal vaccination in Madrid. Pediatr Infect Dis J 30:471–474PubMed Picazo J, Ruiz-Contreras J, Casado-Flores J, Negreira S, Del Castillo F, Hernández-Sampelayo T et al (2011) Laboratory-based, 2-year surveillance of pediatric parapneumonic pneumococcal empyema following heptavalent pneumococcal conjugate vaccine universal vaccination in Madrid. Pediatr Infect Dis J 30:471–474PubMed
91.
Zurück zum Zitat van Hoek AJ, Andrews N, Waight PA, George R, Miller E (2012) Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-vaccine serotypes. PLoS One 7:e39150PubMedCrossRefPubMedCentral van Hoek AJ, Andrews N, Waight PA, George R, Miller E (2012) Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-vaccine serotypes. PLoS One 7:e39150PubMedCrossRefPubMedCentral
92.
Zurück zum Zitat Muñoz-Almagro C, Gala S, Selva L, Jordan I, Tarragó D, Pallares R (2011) DNA bacterial load in children and adolescents with pneumococcal pneumonia and empyema. Eur J Clin Microbiol Infect Dis 30:327–335PubMedCrossRef Muñoz-Almagro C, Gala S, Selva L, Jordan I, Tarragó D, Pallares R (2011) DNA bacterial load in children and adolescents with pneumococcal pneumonia and empyema. Eur J Clin Microbiol Infect Dis 30:327–335PubMedCrossRef
93.
Zurück zum Zitat Tarragó D, Fenoll A, Sánchez-Tatay D, Arroyo LA, Muñoz-Almagro C, Esteva C et al (2008) Identification of pneumococcal serotypes from culture-negative clinical specimens by novel real-time PCR. Clin Microbiol Infect 14:828–834PubMedCrossRef Tarragó D, Fenoll A, Sánchez-Tatay D, Arroyo LA, Muñoz-Almagro C, Esteva C et al (2008) Identification of pneumococcal serotypes from culture-negative clinical specimens by novel real-time PCR. Clin Microbiol Infect 14:828–834PubMedCrossRef
94.
Zurück zum Zitat Thomas MF, Sheppard CL, Guiver M, Slack MP, George RC, Gorton R et al (2012) Emergence of pneumococcal 19A empyema in UK children. Arch Dis Child 97:1070–1072PubMedCrossRef Thomas MF, Sheppard CL, Guiver M, Slack MP, George RC, Gorton R et al (2012) Emergence of pneumococcal 19A empyema in UK children. Arch Dis Child 97:1070–1072PubMedCrossRef
95.
Zurück zum Zitat Esposito S, Marchese A, Tozzi AE, Rossi GA, Da Dalt L, Bona G et al (2013) DNA bacterial load in children with bacteremic pneumococcal community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 32:877–881PubMedCrossRef Esposito S, Marchese A, Tozzi AE, Rossi GA, Da Dalt L, Bona G et al (2013) DNA bacterial load in children with bacteremic pneumococcal community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 32:877–881PubMedCrossRef
96.
Zurück zum Zitat Weigl JAI, Puppe W, Belke O, Neusüss J, Bagci F, Schmitt HJ (2005) Population-based incidence of severe pneumonia in children in Kiel, Germany. Klin Padiatr 217:211–219PubMedCrossRef Weigl JAI, Puppe W, Belke O, Neusüss J, Bagci F, Schmitt HJ (2005) Population-based incidence of severe pneumonia in children in Kiel, Germany. Klin Padiatr 217:211–219PubMedCrossRef
97.
Zurück zum Zitat Dortet L, Ploy MC, Poyart C, Raymond J; ORP Ile de France Ouest (2009) Emergence of Streptococcus pneumoniae of serotype 19A in France: molecular capsular serotyping, antimicrobial susceptibilities, and epidemiology. Diagn Microbiol Infect Dis 65:49–57PubMedCrossRef Dortet L, Ploy MC, Poyart C, Raymond J; ORP Ile de France Ouest (2009) Emergence of Streptococcus pneumoniae of serotype 19A in France: molecular capsular serotyping, antimicrobial susceptibilities, and epidemiology. Diagn Microbiol Infect Dis 65:49–57PubMedCrossRef
98.
Zurück zum Zitat Payeras A, Villoslada A, Garau M, Borras M, Pareja A, Beingolea D et al (2011) Neumonía neumocócica en la era de la vacuna conjugada heptavalente. Enferm Infecc Microbiol Clin 29:250–256PubMedCrossRef Payeras A, Villoslada A, Garau M, Borras M, Pareja A, Beingolea D et al (2011) Neumonía neumocócica en la era de la vacuna conjugada heptavalente. Enferm Infecc Microbiol Clin 29:250–256PubMedCrossRef
99.
Zurück zum Zitat Fletcher M, Leeming J, Cartwright K, Finn A; South West of England Invasive Community Acquired Infection Study Group (2006) Childhood empyema: limited potential impact of 7-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J 25:559–560PubMedCrossRef Fletcher M, Leeming J, Cartwright K, Finn A; South West of England Invasive Community Acquired Infection Study Group (2006) Childhood empyema: limited potential impact of 7-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J 25:559–560PubMedCrossRef
100.
Zurück zum Zitat Weinstein MP, Klugman KP, Jones RN (2009) Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis 48:1596–1600PubMedCrossRef Weinstein MP, Klugman KP, Jones RN (2009) Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis 48:1596–1600PubMedCrossRef
101.
Zurück zum Zitat Obando I, Arroyo LA, Sánchez-Tatay D, Moreno D, Hausdorff WP, Brueggemann AB (2006) Molecular typing of pneumococci causing parapneumonic empyema in Spanish children using multilocus sequence typing directly on pleural fluid samples. Pediatr Infect Dis J 25:962–963PubMedCrossRef Obando I, Arroyo LA, Sánchez-Tatay D, Moreno D, Hausdorff WP, Brueggemann AB (2006) Molecular typing of pneumococci causing parapneumonic empyema in Spanish children using multilocus sequence typing directly on pleural fluid samples. Pediatr Infect Dis J 25:962–963PubMedCrossRef
102.
Zurück zum Zitat Janapatla RP, Hsu MH, Hsieh YC, Lee HY, Lin TY, Chiu CH (2013) Necrotizing pneumonia caused by nanC-carrying serotypes is associated with pneumococcal haemolytic uraemic syndrome in children. Clin Microbiol Infect 19:480–486PubMedCrossRef Janapatla RP, Hsu MH, Hsieh YC, Lee HY, Lin TY, Chiu CH (2013) Necrotizing pneumonia caused by nanC-carrying serotypes is associated with pneumococcal haemolytic uraemic syndrome in children. Clin Microbiol Infect 19:480–486PubMedCrossRef
Metadaten
Titel
Pneumococcal empyema and complicated pneumonias: global trends in incidence, prevalence, and serotype epidemiology
verfasst von
M. A. Fletcher
H.-J. Schmitt
M. Syrochkina
G. Sylvester
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Clinical Microbiology & Infectious Diseases / Ausgabe 6/2014
Print ISSN: 0934-9723
Elektronische ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-014-2062-6

Weitere Artikel der Ausgabe 6/2014

European Journal of Clinical Microbiology & Infectious Diseases 6/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.