Skip to main content
Erschienen in: Lasers in Medical Science 2/2009

01.03.2009 | Original article

Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells

verfasst von: Hyung Keun Kim, Ji Hyun Kim, Azlina Amir Abbas, Dong-Ok Kim, Sung-Jun Park, Jae Yoon Chung, Eun Kyoo Song, Taek Rim Yoon

Erschienen in: Lasers in Medical Science | Ausgabe 2/2009

Einloggen, um Zugang zu erhalten

Abstract

The use of light for medical treatment has been studied previously. In this study, we examined the effect of light from a red light-emitting diode on osteogenic differentiation of mouse mesenchymal stem cells (D1 cells) which were cultured in the presence of osteogenic differentiation medium (ODM) for 3 days, then exposed to a red light-emitting diode (LED) light of 647 nm wavelength once for 10 s, 30 s or 90 s with radiation energies of 0.093 J, 0.279 J and 0.836 J, respectively. D1 cells in the presence of ODM differentiated into osteoblasts, and this process was enhanced on exposure to LED light in ODM medium. This effect was confirmed by increased Alizarin red staining, higher alkaline phosphatase (ALP) activity, higher mRNA expressions of osteocalcin, collagen type I, osteopontin and Runt-related transcription factor2 (Runx2), and higher levels by reverse transcriptase-polymerase chain reaction (RT-PCR) and by increased immunofluorescence staining against cluster of differentiation 44 (CD44) by immunofluorescence microscopy, confocal microscopy and flow cytometric analysis. These data suggest that osteogenic differentiation of mesenchymal stem cells (MSCs) in ODM is enhanced by LED light exposure.
Literatur
1.
Zurück zum Zitat Baxter GD, Allen J (1994) Therapeutic lasers: theory and practice, 1st edn. Churchill Livingstone, Edinburgh, Baxter GD, Allen J (1994) Therapeutic lasers: theory and practice, 1st edn. Churchill Livingstone, Edinburgh,
2.
Zurück zum Zitat Pogrel MA, Ji Wel C, Zhang K (1997) Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Laser Surg Med 20:426–432CrossRef Pogrel MA, Ji Wel C, Zhang K (1997) Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Laser Surg Med 20:426–432CrossRef
3.
Zurück zum Zitat Reddy GK, Stehno Bittel K, Enwemeka CS (1998) Laser photostimulation of collagen production in healing rabbit Achilles tendons. Laser Surg Med 22:281–287CrossRef Reddy GK, Stehno Bittel K, Enwemeka CS (1998) Laser photostimulation of collagen production in healing rabbit Achilles tendons. Laser Surg Med 22:281–287CrossRef
4.
Zurück zum Zitat Karu T (1998) The science of low-power laser therapy, 1st edn. Gordon and Breach, New Delhi Karu T (1998) The science of low-power laser therapy, 1st edn. Gordon and Breach, New Delhi
5.
Zurück zum Zitat Reddy GK, Stehno Bittel L, Enwemeka CS (2001) Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen 9:248–255PubMedCrossRef Reddy GK, Stehno Bittel L, Enwemeka CS (2001) Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen 9:248–255PubMedCrossRef
6.
Zurück zum Zitat Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef
7.
Zurück zum Zitat Karu T (2003) Low-power laser therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton, Fla Karu T (2003) Low-power laser therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton, Fla
8.
Zurück zum Zitat Mester E, Jaszagi-Nagy E (1973) The effects of laser radiation on wound healing and collagen synthesis. Studia Biophys 35:227–230 Mester E, Jaszagi-Nagy E (1973) The effects of laser radiation on wound healing and collagen synthesis. Studia Biophys 35:227–230
9.
Zurück zum Zitat Abergel RP, Lyons RF, Castel JC, Dwyer RM, Uitto J (1987) Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J Dermatol Surg Oncol 13:127–133PubMed Abergel RP, Lyons RF, Castel JC, Dwyer RM, Uitto J (1987) Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J Dermatol Surg Oncol 13:127–133PubMed
10.
Zurück zum Zitat Oron U, Yaakobi T, Oron A Hayam G, Gepstein L, Rubin O, Wolf T, Ben Heim S (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28:204–211PubMedCrossRef Oron U, Yaakobi T, Oron A Hayam G, Gepstein L, Rubin O, Wolf T, Ben Heim S (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28:204–211PubMedCrossRef
11.
Zurück zum Zitat Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodontol 23:492–496PubMedCrossRef Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodontol 23:492–496PubMedCrossRef
12.
Zurück zum Zitat Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146PubMedCrossRef Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146PubMedCrossRef
13.
Zurück zum Zitat Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18:95–99PubMedCrossRef Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18:95–99PubMedCrossRef
14.
Zurück zum Zitat Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23:167–171PubMedCrossRef Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23:167–171PubMedCrossRef
15.
Zurück zum Zitat Fibbe WE (2002) Mesenchymal stem cells. A potential source for skeletal repair. Ann Rheum Dis 61:ii29–31 Fibbe WE (2002) Mesenchymal stem cells. A potential source for skeletal repair. Ann Rheum Dis 61:ii29–31
16.
Zurück zum Zitat Owen ME, Cave J, Joyner CJ (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 87:731–738PubMed Owen ME, Cave J, Joyner CJ (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 87:731–738PubMed
17.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef
18.
Zurück zum Zitat Dahir GA, Cui Q, Anderson P, Simon C, Joyner C, Triffitt JT, Balian G (2000) Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop Relat Res 379:S134–145PubMedCrossRef Dahir GA, Cui Q, Anderson P, Simon C, Joyner C, Triffitt JT, Balian G (2000) Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop Relat Res 379:S134–145PubMedCrossRef
19.
Zurück zum Zitat Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226:507–520 Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226:507–520
20.
Zurück zum Zitat Chen C-H, Ho M-L, Chang J-K, Hung S-H, Wang G-W (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16:2039–2045PubMedCrossRef Chen C-H, Ho M-L, Chang J-K, Hung S-H, Wang G-W (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16:2039–2045PubMedCrossRef
21.
Zurück zum Zitat Li X, Jin L, Cui Q, Wang G-W, Balian G (2005) Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int 16:101–108PubMedCrossRef Li X, Jin L, Cui Q, Wang G-W, Balian G (2005) Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int 16:101–108PubMedCrossRef
22.
Zurück zum Zitat Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef
23.
Zurück zum Zitat Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55PubMedCrossRef Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55PubMedCrossRef
24.
Zurück zum Zitat Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111:525–532PubMedCrossRef Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111:525–532PubMedCrossRef
25.
Zurück zum Zitat Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jpn Orthop Assoc 65:787–799 Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jpn Orthop Assoc 65:787–799
26.
Zurück zum Zitat Yamamoto M, Tamura K, Hiratsuka K, Abiko Y (2001) Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation. Laser Med Sci 16:213–217CrossRef Yamamoto M, Tamura K, Hiratsuka K, Abiko Y (2001) Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation. Laser Med Sci 16:213–217CrossRef
27.
Zurück zum Zitat Ueda Y, Shimizu N (2003) Effects of pulse frequency of low level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–277PubMedCrossRef Ueda Y, Shimizu N (2003) Effects of pulse frequency of low level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–277PubMedCrossRef
28.
Zurück zum Zitat Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448:372–380PubMedCrossRef Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448:372–380PubMedCrossRef
29.
Zurück zum Zitat Asahina I, Sampath TK, Hauschka PV (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 222:38–47PubMedCrossRef Asahina I, Sampath TK, Hauschka PV (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 222:38–47PubMedCrossRef
30.
Zurück zum Zitat Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell-population−effect of dexamethasone. J Cell Biol 106:2139–2151PubMedCrossRef Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell-population−effect of dexamethasone. J Cell Biol 106:2139–2151PubMedCrossRef
31.
Zurück zum Zitat Thompson DL, Lum KD, Nygaard SC, Kuestner RE, Kelly KA, Gimble JM, Moore EE (1998) The derivation and characterization of stromal cell lines from the bone marrow of p53(-/-) mice: New insights into osteoblast and adipocyte differentiation. J Bone Miner Res 13:195–204PubMedCrossRef Thompson DL, Lum KD, Nygaard SC, Kuestner RE, Kelly KA, Gimble JM, Moore EE (1998) The derivation and characterization of stromal cell lines from the bone marrow of p53(-/-) mice: New insights into osteoblast and adipocyte differentiation. J Bone Miner Res 13:195–204PubMedCrossRef
32.
Zurück zum Zitat Seiler JG III, Johnson J (2000) Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9:91–99PubMed Seiler JG III, Johnson J (2000) Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9:91–99PubMed
33.
Zurück zum Zitat Kotobuki N, Hirose M, Takakura Y, Ohgushi H (2004) Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs 28:33–39PubMedCrossRef Kotobuki N, Hirose M, Takakura Y, Ohgushi H (2004) Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs 28:33–39PubMedCrossRef
34.
Zurück zum Zitat Li X, Cui Q, Kao C, Wang G-W, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARg2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659PubMedCrossRef Li X, Cui Q, Kao C, Wang G-W, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARg2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659PubMedCrossRef
35.
Zurück zum Zitat Wang C, Lee G, Hsu W, Yeh C-H, Ho M-L, Wang G-J (2006) Identification of USF2 as a key regulator of Runx2 expression in mouse pluripotent mesenchymal D1 cells. Mol Cell Biochem 292:79–88PubMedCrossRef Wang C, Lee G, Hsu W, Yeh C-H, Ho M-L, Wang G-J (2006) Identification of USF2 as a key regulator of Runx2 expression in mouse pluripotent mesenchymal D1 cells. Mol Cell Biochem 292:79–88PubMedCrossRef
36.
Zurück zum Zitat Gundberg CM, Hauschka PV, Lian JB, Gallop PM (1984) Osteocalcin: isolation, characterization, and detection. Methods Enzymol 107:516–544PubMedCrossRef Gundberg CM, Hauschka PV, Lian JB, Gallop PM (1984) Osteocalcin: isolation, characterization, and detection. Methods Enzymol 107:516–544PubMedCrossRef
37.
Zurück zum Zitat Owen TA, Holthuis J, Markose E, van Wijnen AJ, Wolfe SA, Grimes SR, Lian JB, Stein GS (1990) Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci U S A 87:5129–5133PubMedCrossRef Owen TA, Holthuis J, Markose E, van Wijnen AJ, Wolfe SA, Grimes SR, Lian JB, Stein GS (1990) Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci U S A 87:5129–5133PubMedCrossRef
38.
Zurück zum Zitat Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487PubMed Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487PubMed
39.
Zurück zum Zitat Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterial and bone mechanotransduction. Biomaterials 22:2581–2593PubMedCrossRef Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterial and bone mechanotransduction. Biomaterials 22:2581–2593PubMedCrossRef
40.
Zurück zum Zitat Hu J, Fraser R, Russell JJ, Ben-Nissan B, Vago R (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–595 Hu J, Fraser R, Russell JJ, Ben-Nissan B, Vago R (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–595
41.
Zurück zum Zitat Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 101:5140–5145PubMedCrossRef Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 101:5140–5145PubMedCrossRef
42.
Zurück zum Zitat Yamauchi M, Yamaguchi T, Kaji H, Sugimoto T, Chihara K (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616PubMedCrossRef Yamauchi M, Yamaguchi T, Kaji H, Sugimoto T, Chihara K (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616PubMedCrossRef
43.
Zurück zum Zitat Adamia S, Maxwell CA, Pilarski LM (2005) Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord 5:3–14PubMedCrossRef Adamia S, Maxwell CA, Pilarski LM (2005) Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord 5:3–14PubMedCrossRef
44.
Zurück zum Zitat Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385PubMedCrossRef Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385PubMedCrossRef
45.
Zurück zum Zitat Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462PubMedCrossRef Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462PubMedCrossRef
Metadaten
Titel
Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells
verfasst von
Hyung Keun Kim
Ji Hyun Kim
Azlina Amir Abbas
Dong-Ok Kim
Sung-Jun Park
Jae Yoon Chung
Eun Kyoo Song
Taek Rim Yoon
Publikationsdatum
01.03.2009
Verlag
Springer-Verlag
Erschienen in
Lasers in Medical Science / Ausgabe 2/2009
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-008-0550-6

Weitere Artikel der Ausgabe 2/2009

Lasers in Medical Science 2/2009 Zur Ausgabe