Skip to main content
Erschienen in: Lasers in Medical Science 1/2014

01.01.2014 | Original Article

The impact of cell culture equipment on energy loss

verfasst von: Lleucu B. Davies, Michael N. Kiernan, Joanna C. Bishop, Catherine A. Thornton, Gareth Morgan

Erschienen in: Lasers in Medical Science | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Light energy of discrete wavelengths supplied via lasers and broadband intense pulsed light have been used therapeutically for many years. In vitro models complement clinical studies, especially for the elucidation of underlying mechanisms of action. Clarification that light energy reaches the cells is necessary when developing protocols for the treatment of cells using in vitro models. Few studies report on energy loss in cell culture equipment. The ability of energy from light with therapeutic potential to reach cells in culture needs to be determined; this includes determining the proportion of light energy lost within standard cell culture media and cell culture vessels. The energy absorption of cell culture media, with/without the pH indicator dye phenol red, and the loss of energy within different plastics and glassware used typically for in vitro cell culture were investigated using intense pulsed light and a yellow pulsed dye laser. Media containing phenol red have a distinctive absorption peak (560 nm) absent in phenol red-free media and restored by the addition of phenol red. For both light sources, energy loss was lowest in standard polystyrene tissue culture flasks or multi-well plates and highest in polypropylene vessels or glass tubes. The effects of phenol red-free media on the absorption of energy varied with the light source used. Phenol red-free media are the media of choice; polystyrene vessels with flat surfaces such as culture flasks or multi-well plates should be used in preference to polypropylene or glass vessels.
Literatur
3.
Zurück zum Zitat Mitton D, Ackroyd R (2005) History of photodynamic therapy in Great Britain. Photodiagn Photodyn Ther 2(4):239–246CrossRef Mitton D, Ackroyd R (2005) History of photodynamic therapy in Great Britain. Photodiagn Photodyn Ther 2(4):239–246CrossRef
4.
Zurück zum Zitat Niemz MH (2007) Laser–tissue interactions, 3rd edn. Springer, Berlin Niemz MH (2007) Laser–tissue interactions, 3rd edn. Springer, Berlin
5.
Zurück zum Zitat Moor AC (2000) Signaling pathways in cell death and survival after photodynamic therapy. J Photochem and Photobiol B, Biol 57(1):1–13CrossRef Moor AC (2000) Signaling pathways in cell death and survival after photodynamic therapy. J Photochem and Photobiol B, Biol 57(1):1–13CrossRef
6.
Zurück zum Zitat Okunaka T, Kato H, Tsutsui H, Ishizumi T, Ichinose S, Kuroiwa Y (2004) Photodynamic therapy for peripheral lung cancer. Lung Cancer 43(1):77–82PubMedCrossRef Okunaka T, Kato H, Tsutsui H, Ishizumi T, Ichinose S, Kuroiwa Y (2004) Photodynamic therapy for peripheral lung cancer. Lung Cancer 43(1):77–82PubMedCrossRef
7.
Zurück zum Zitat Dowlatshahi K, Francescatti DS, Bloom KJ (2002) Laser therapy for small breast cancers. Am J Surg 184(4):359–363PubMedCrossRef Dowlatshahi K, Francescatti DS, Bloom KJ (2002) Laser therapy for small breast cancers. Am J Surg 184(4):359–363PubMedCrossRef
10.
Zurück zum Zitat Mariwalla K, Dover JS (2006) The use of lasers for decorative tattoo removal. Skin Therapy Letter 11(5):8–11PubMed Mariwalla K, Dover JS (2006) The use of lasers for decorative tattoo removal. Skin Therapy Letter 11(5):8–11PubMed
11.
Zurück zum Zitat Wenzel SM (2010) Current concepts in laser tattoo removal. Skin Therapy Letter 15(3):3–5PubMed Wenzel SM (2010) Current concepts in laser tattoo removal. Skin Therapy Letter 15(3):3–5PubMed
15.
Zurück zum Zitat Yaghmai D, Garden JM, Bakus AD, Massa MC (2005) Comparison of a 1,064 nm laser and a 1,320 nm laser for the nonablative treatment of acne scars. Dermatologic Surgery: Official Publ for Am Soc for Dermatologic Surgery 31(8 Pt 1):903–909 Yaghmai D, Garden JM, Bakus AD, Massa MC (2005) Comparison of a 1,064 nm laser and a 1,320 nm laser for the nonablative treatment of acne scars. Dermatologic Surgery: Official Publ for Am Soc for Dermatologic Surgery 31(8 Pt 1):903–909
16.
Zurück zum Zitat Cassuto DA, Scrimali L, Sirago P (2010) Treatment of hypertrophic scars and keloids with an LBO laser (532 nm) and silicone gel sheeting. J Cosmetic Laser Ther: Official Publ Eur Soc for Laser Dermatology 12(1):32–37. doi:10.3109/14764170903453846 CrossRef Cassuto DA, Scrimali L, Sirago P (2010) Treatment of hypertrophic scars and keloids with an LBO laser (532 nm) and silicone gel sheeting. J Cosmetic Laser Ther: Official Publ Eur Soc for Laser Dermatology 12(1):32–37. doi:10.​3109/​1476417090345384​6 CrossRef
18.
Zurück zum Zitat Adamic M, Troilius A, Adatto M, Drosner M, Dahmane R (2007) Vascular lasers and IPLS: guidelines for care from the European Society for Laser Dermatology (ESLD). J Cosmetic Laser Ther: Official Publ Eur Soc for Laser Dermatology 9(2):113–124. doi:10.1080/14764170701280693 CrossRef Adamic M, Troilius A, Adatto M, Drosner M, Dahmane R (2007) Vascular lasers and IPLS: guidelines for care from the European Society for Laser Dermatology (ESLD). J Cosmetic Laser Ther: Official Publ Eur Soc for Laser Dermatology 9(2):113–124. doi:10.​1080/​1476417070128069​3 CrossRef
20.
Zurück zum Zitat Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29(2):179–184. doi:10.1002/lsm.1107 PubMedCrossRef Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29(2):179–184. doi:10.​1002/​lsm.​1107 PubMedCrossRef
21.
Zurück zum Zitat Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438. doi:10.1002/lsm.20646 PubMedCrossRef Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438. doi:10.​1002/​lsm.​20646 PubMedCrossRef
22.
Zurück zum Zitat Gulsoy M, Ozer GH, Bozkulak O, Tabakoglu HO, Aktas E, Deniz G, Ertan C (2006) The biological effects of 632.8-nm low energy He-Ne laser on peripheral blood mononuclear cells in vitro. J Photochem and Photobiol B: Biol 82(3):199–202CrossRef Gulsoy M, Ozer GH, Bozkulak O, Tabakoglu HO, Aktas E, Deniz G, Ertan C (2006) The biological effects of 632.8-nm low energy He-Ne laser on peripheral blood mononuclear cells in vitro. J Photochem and Photobiol B: Biol 82(3):199–202CrossRef
23.
Zurück zum Zitat Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36(1):8–12. doi:10.1002/lsm.20117 PubMedCrossRef Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36(1):8–12. doi:10.​1002/​lsm.​20117 PubMedCrossRef
25.
26.
Zurück zum Zitat Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146. doi:10.1007/s10103-005-0355-9 PubMedCrossRef Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146. doi:10.​1007/​s10103-005-0355-9 PubMedCrossRef
27.
Zurück zum Zitat Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733. doi:10.1002/lsm.20709 PubMedCrossRef Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733. doi:10.​1002/​lsm.​20709 PubMedCrossRef
29.
Zurück zum Zitat Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, Ishikawa I, Izumi Y (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Laser Med Sci 25(4):559–569. doi:10.1007/s10103-010-0761-5 CrossRef Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, Ishikawa I, Izumi Y (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Laser Med Sci 25(4):559–569. doi:10.​1007/​s10103-010-0761-5 CrossRef
31.
Zurück zum Zitat Dortbudak O, Haas R, Mailath-Pokorny G (2000) Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res 11(6):540–545PubMedCrossRef Dortbudak O, Haas R, Mailath-Pokorny G (2000) Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res 11(6):540–545PubMedCrossRef
34.
Zurück zum Zitat Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448(3):372–380PubMedCrossRef Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448(3):372–380PubMedCrossRef
36.
Zurück zum Zitat Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115(Pt 7):1461–1469PubMed Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115(Pt 7):1461–1469PubMed
37.
Zurück zum Zitat Pal G, Dutta A, Mitra K, Grace MS, Amat A, Romanczyk TB, Wu X, Chakrabarti K, Anders J, Gorman E, Waynant RW, Tata DB (2007) Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem and Photobiol B: Biol 86(3):252–261. doi:10.1016/j.jphotobiol.2006.12.001 CrossRef Pal G, Dutta A, Mitra K, Grace MS, Amat A, Romanczyk TB, Wu X, Chakrabarti K, Anders J, Gorman E, Waynant RW, Tata DB (2007) Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem and Photobiol B: Biol 86(3):252–261. doi:10.​1016/​j.​jphotobiol.​2006.​12.​001 CrossRef
38.
Zurück zum Zitat Webb C, Dyson M (2003) The effect of 880 nm low level laser energy on human fibroblast cell numbers: a possible role in hypertrophic wound healing. J Photochem and Photobiol B: Biol 70(1):39–44CrossRef Webb C, Dyson M (2003) The effect of 880 nm low level laser energy on human fibroblast cell numbers: a possible role in hypertrophic wound healing. J Photochem and Photobiol B: Biol 70(1):39–44CrossRef
39.
Zurück zum Zitat Bjordal JM, Iversen V, Martins-Lopes RBA (2006) Low level laser therapy reduces inflammation in activated Achilles tendinitis. Mech Low Light Ther 6140:G1400–G14001210. doi:10.1117/12.645516, art. no. 61400G Bjordal JM, Iversen V, Martins-Lopes RBA (2006) Low level laser therapy reduces inflammation in activated Achilles tendinitis. Mech Low Light Ther 6140:G1400–G14001210. doi:10.​1117/​12.​645516, art. no. 61400G
40.
Zurück zum Zitat Bjordal JM, Lopes-Martins RAB, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E-2 concentrations. Bri J Sports Med 40(1):76–80. doi:10.1136/bjsm.2005.020842 CrossRef Bjordal JM, Lopes-Martins RAB, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E-2 concentrations. Bri J Sports Med 40(1):76–80. doi:10.​1136/​bjsm.​2005.​020842 CrossRef
41.
Zurück zum Zitat Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, Gonzalez-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300. doi:10.1002/Lsm.20225 PubMedCrossRef Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, Gonzalez-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300. doi:10.​1002/​Lsm.​20225 PubMedCrossRef
42.
Zurück zum Zitat Wright PA, Ahmed S, Cole RP, Moore JC, Royston SL, Widdowson DC (2007) Cutaneous applications of medical lasers and intense pulsed light systems. J R Coll Physicians Edin 37:300–304 Wright PA, Ahmed S, Cole RP, Moore JC, Royston SL, Widdowson DC (2007) Cutaneous applications of medical lasers and intense pulsed light systems. J R Coll Physicians Edin 37:300–304
44.
Zurück zum Zitat Beeson S, Mayer JW (2008) Patterns of light. Springer, New York Beeson S, Mayer JW (2008) Patterns of light. Springer, New York
46.
Zurück zum Zitat Baylor SM, Hollingworth S (1990) Absorbance signals from resting frog skeletal muscle fibers injected with the pH indicator dye, phenol red. J Gen Physiol 96(3):449–471PubMedCrossRef Baylor SM, Hollingworth S (1990) Absorbance signals from resting frog skeletal muscle fibers injected with the pH indicator dye, phenol red. J Gen Physiol 96(3):449–471PubMedCrossRef
Metadaten
Titel
The impact of cell culture equipment on energy loss
verfasst von
Lleucu B. Davies
Michael N. Kiernan
Joanna C. Bishop
Catherine A. Thornton
Gareth Morgan
Publikationsdatum
01.01.2014
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2014
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1304-7

Weitere Artikel der Ausgabe 1/2014

Lasers in Medical Science 1/2014 Zur Ausgabe