Skip to main content
Erschienen in: Lasers in Medical Science 2/2014

01.03.2014 | Review Article

A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer

verfasst von: Ali Shakeri-Zadeh, Seyed Kamran Kamrava, Mohammad Farhadi, Zahra Hajikarimi, Shayan Maleki, Amirhossein Ahmadi

Erschienen in: Lasers in Medical Science | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

The application of gold nanoparticles (AuNPs) in nanophotothermolysis as a great photosensitizer is expanding, and this subject is a challenging area for cancer therapy. Recent technological advances in nanoscale manufacturing and synthesis promise the development of highly beneficial and innovative methods for the targeting of cancer. However, there is an obstacle to conducting effective laser-based nanosurgery because AuNPs are activated by visible or near infrared wavelengths, and the penetration of a laser beam inside the body is limited by some absorbents, such as melanin, water, and blood molecules. Considering everything stated above, we have suggested the application of a folate-conjugated AuNP as an effective agent for targeted nanophotothermolysis and the application of an optical fiber to transport the laser light from the source to the target tissue inside the body. Thus, a new method of nanosurgery in which a surgeon is able to perform surgery at the cellular or even at the subcellular level may be possible.
Literatur
1.
Zurück zum Zitat Colombelli J et al (2005) Subcellular nanosurgery with a pulsed subnanosecond UV-A laser. Med Laser Appl 20:217–222CrossRef Colombelli J et al (2005) Subcellular nanosurgery with a pulsed subnanosecond UV-A laser. Med Laser Appl 20:217–222CrossRef
2.
Zurück zum Zitat Huang X et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228PubMedCrossRef Huang X et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228PubMedCrossRef
3.
Zurück zum Zitat Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37:219–226PubMedCrossRef Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37:219–226PubMedCrossRef
4.
Zurück zum Zitat Niemz M. (2004) Laser–tissue interactions: fundamentals and applications. Springer, Berlin Niemz M. (2004) Laser–tissue interactions: fundamentals and applications. Springer, Berlin
5.
Zurück zum Zitat Sultan R (1990) Tumour ablation by laser in general surgery. Lasers Med Sci 5:185–193CrossRef Sultan R (1990) Tumour ablation by laser in general surgery. Lasers Med Sci 5:185–193CrossRef
6.
Zurück zum Zitat Mansoori GA, Mohazzabi P, McCormack P (2007) Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. WRSTSD 4:226–257CrossRef Mansoori GA, Mohazzabi P, McCormack P (2007) Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. WRSTSD 4:226–257CrossRef
7.
Zurück zum Zitat Mansoori GA. (2005) Principles of nanotechnology: molecular based study of condensed matter in small systems. World Sci Pub Co, Hackensack Mansoori GA. (2005) Principles of nanotechnology: molecular based study of condensed matter in small systems. World Sci Pub Co, Hackensack
8.
Zurück zum Zitat Mansoori GA, George TF, Assoufid L, Zhang G. (2007) Molecular building blocks for nanotechnology: from diamondoids to nanoscale materials and applications. Springer, Berlin Mansoori GA, George TF, Assoufid L, Zhang G. (2007) Molecular building blocks for nanotechnology: from diamondoids to nanoscale materials and applications. Springer, Berlin
9.
Zurück zum Zitat El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264PubMedCrossRef El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264PubMedCrossRef
10.
Zurück zum Zitat Anderson LJE, Hansen E, Lukianova-Hleb EY, Hafner JH, Lapotko DO (2010) Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J Control Release 144:151–158PubMedCentralPubMedCrossRef Anderson LJE, Hansen E, Lukianova-Hleb EY, Hafner JH, Lapotko DO (2010) Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J Control Release 144:151–158PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Freitas Jr Robert A (2000) Nanodentistry. J Am Dent Assoc 131:1559–1566CrossRef Freitas Jr Robert A (2000) Nanodentistry. J Am Dent Assoc 131:1559–1566CrossRef
13.
Zurück zum Zitat Freitas Jr RA. (2005) Current status of nanomedicine and medical nanorobotics [invited survey]. J Comput Theor Nanosci; 2:1–25 Freitas Jr RA. (2005) Current status of nanomedicine and medical nanorobotics [invited survey]. J Comput Theor Nanosci; 2:1–25
14.
Zurück zum Zitat Freitas Jr RA. (2005) What is nanomedicine? Nanomed Nanotechnol Biol Med; 1:2–9 Freitas Jr RA. (2005) What is nanomedicine? Nanomed Nanotechnol Biol Med; 1:2–9
15.
Zurück zum Zitat Borges AR, Schengrund CL (2005) Dendrimers and antivirals: a review. Curr Drug Targets Infect Disord 5:247–254CrossRef Borges AR, Schengrund CL (2005) Dendrimers and antivirals: a review. Curr Drug Targets Infect Disord 5:247–254CrossRef
16.
Zurück zum Zitat Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K et al (2005) Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett 15:1107–1109PubMedCrossRef Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K et al (2005) Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett 15:1107–1109PubMedCrossRef
17.
Zurück zum Zitat O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176PubMedCrossRef O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176PubMedCrossRef
18.
Zurück zum Zitat Freitas Jr Robert A (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3:243–246CrossRef Freitas Jr Robert A (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3:243–246CrossRef
19.
Zurück zum Zitat Huttmann G, Yao C, Endl E (2005) New concepts in laser medicine: towards a laser surgery with cellular precision. Medical Laser Application 20:135–139CrossRef Huttmann G, Yao C, Endl E (2005) New concepts in laser medicine: towards a laser surgery with cellular precision. Medical Laser Application 20:135–139CrossRef
20.
Zurück zum Zitat Benno Radt. (2002) Inaktivierungvon Proteinen und Zellen durch Laserbestrahlungvon Mikropartikeln. Ph.D. thesis, University Lu¨ beck, Benno Radt. (2002) Inaktivierungvon Proteinen und Zellen durch Laserbestrahlungvon Mikropartikeln. Ph.D. thesis, University Lu¨ beck,
21.
Zurück zum Zitat Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032PubMedCentralPubMedCrossRef Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Lapotko DO, Zharov VP (2005) Spectral evaluation of laser-induced cell damage with photothermal microscopy. Lasers SurgMed 36:22–30CrossRef Lapotko DO, Zharov VP (2005) Spectral evaluation of laser-induced cell damage with photothermal microscopy. Lasers SurgMed 36:22–30CrossRef
23.
Zurück zum Zitat Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31:365–374PubMedCrossRef Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31:365–374PubMedCrossRef
24.
Zurück zum Zitat Shakeri-Zadeh A, Ghasemifard M, Ali Mansoori G (2010) Structural and optical characterization of folate-conjugated gold-nanoparticles. Physica E 42:1272–1280CrossRef Shakeri-Zadeh A, Ghasemifard M, Ali Mansoori G (2010) Structural and optical characterization of folate-conjugated gold-nanoparticles. Physica E 42:1272–1280CrossRef
25.
Zurück zum Zitat Shakeri-Zadeh A, Eshghi H, Mansoori GA, AR H (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol. J Nanotech Prog Intl 1:13–29 Shakeri-Zadeh A, Eshghi H, Mansoori GA, AR H (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol. J Nanotech Prog Intl 1:13–29
26.
Zurück zum Zitat Hashemian AR, Eshghi H, Shakeri-Zadeh A, Mansoori G (2010) Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Intl J Nanosci Nanotech 5:25–33 Hashemian AR, Eshghi H, Shakeri-Zadeh A, Mansoori G (2010) Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Intl J Nanosci Nanotech 5:25–33
27.
Zurück zum Zitat Shakeri-Zadeh A, Mansoori G, Hashemian A, Eshghi H, Sazgarnia A, Montazerabadi A (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dynamic Biochem Proc Biotech Mol Biol 4:6–12 Shakeri-Zadeh A, Mansoori G, Hashemian A, Eshghi H, Sazgarnia A, Montazerabadi A (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dynamic Biochem Proc Biotech Mol Biol 4:6–12
28.
Zurück zum Zitat Shakeri-Zadeh A, GA M. Cancer Nanotechnology treatment through folate conjugated gold nanoparticles. Proceedings of WCC 2010 (The 2nd World Congress on Cancer), India 2010 Shakeri-Zadeh A, GA M. Cancer Nanotechnology treatment through folate conjugated gold nanoparticles. Proceedings of WCC 2010 (The 2nd World Congress on Cancer), India 2010
29.
Zurück zum Zitat Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2:1911–1928PubMedCentralPubMedCrossRef Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2:1911–1928PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat El-Sayed I, Huang X, El-Sayed M (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135PubMedCrossRef El-Sayed I, Huang X, El-Sayed M (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135PubMedCrossRef
31.
32.
Zurück zum Zitat Hirsch L, Stafford R, Bankson J et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554PubMedCentralPubMedCrossRef Hirsch L, Stafford R, Bankson J et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Berns MW, Greulich KO (2007) Laser Manipulation of Cells and Tissues: Methods in Cell Biology. Elsevier Academic Press, USA Berns MW, Greulich KO (2007) Laser Manipulation of Cells and Tissues: Methods in Cell Biology. Elsevier Academic Press, USA
34.
Zurück zum Zitat Matsuura Y, Shi Y, Abe Y et al (2001) Infrared-laser delivery system based on polymer-coated hollow fibers. Optics Laser Technol 33:279–283CrossRef Matsuura Y, Shi Y, Abe Y et al (2001) Infrared-laser delivery system based on polymer-coated hollow fibers. Optics Laser Technol 33:279–283CrossRef
35.
Zurück zum Zitat Mones E, Moretti F, Fasoli M et al (2006) Feasibility study for the use of Ca3+ − doped optical fibres in radiotherapy. Nucl Inst Meth Phys Res 562:449–455CrossRef Mones E, Moretti F, Fasoli M et al (2006) Feasibility study for the use of Ca3+ − doped optical fibres in radiotherapy. Nucl Inst Meth Phys Res 562:449–455CrossRef
36.
Zurück zum Zitat Abakumov AO, Aleinikov VS, Artjushenko VG et al (1986) Coagulation and destruction of biological tissue by CO laser irradiation using fibre-optic cable. Optics Laser Technol 18:190–192CrossRef Abakumov AO, Aleinikov VS, Artjushenko VG et al (1986) Coagulation and destruction of biological tissue by CO laser irradiation using fibre-optic cable. Optics Laser Technol 18:190–192CrossRef
37.
Zurück zum Zitat Takahara H, Koshijima T, Iida H (1986) Fundamental studies on laser radiation therapy: dispersion of a laser beam passing through optical fibres. Optics Laser Technol 18:85–88CrossRef Takahara H, Koshijima T, Iida H (1986) Fundamental studies on laser radiation therapy: dispersion of a laser beam passing through optical fibres. Optics Laser Technol 18:85–88CrossRef
39.
Zurück zum Zitat Koufman JA, Rees CJ, Frazier WD et al (2007) Office-based laryngeal laser surgery: a review of 443 cases using three wavelengths. Otolaryngol Head Neck Surg 137:146–151PubMedCrossRef Koufman JA, Rees CJ, Frazier WD et al (2007) Office-based laryngeal laser surgery: a review of 443 cases using three wavelengths. Otolaryngol Head Neck Surg 137:146–151PubMedCrossRef
40.
Zurück zum Zitat Krespi YP, Khosh MM, Blitzer A (1994) Transnasal endoscopic laser surgery for the treatment of benign nasopharyngeal lesions. Oper Tech Otolaryngol Head Neck Surg 5:267–270CrossRef Krespi YP, Khosh MM, Blitzer A (1994) Transnasal endoscopic laser surgery for the treatment of benign nasopharyngeal lesions. Oper Tech Otolaryngol Head Neck Surg 5:267–270CrossRef
41.
Zurück zum Zitat Vereczkey A, Kabdebo O, Szeberényi Z et al (2005) Lasers in the surgical management of endometriosis. Rev Gynaecol Practice 5:23–31CrossRef Vereczkey A, Kabdebo O, Szeberényi Z et al (2005) Lasers in the surgical management of endometriosis. Rev Gynaecol Practice 5:23–31CrossRef
42.
Zurück zum Zitat Mouadeb DA, Belafsky PC (2007) In-office laryngeal surgery with the 585 nm pulsed dye laser (PDL). Otolaryngol Head Neck Surg 137:477–481PubMedCrossRef Mouadeb DA, Belafsky PC (2007) In-office laryngeal surgery with the 585 nm pulsed dye laser (PDL). Otolaryngol Head Neck Surg 137:477–481PubMedCrossRef
43.
Zurück zum Zitat Ilgner J, Westhofen M (2010) Laser interventions in otorhinolaryngology—current techniques and future developments. Med Laser App 25:27–33CrossRef Ilgner J, Westhofen M (2010) Laser interventions in otorhinolaryngology—current techniques and future developments. Med Laser App 25:27–33CrossRef
44.
Zurück zum Zitat Shapiro J, Zeitels S, Fried M (1992) Laser surgery for laryngeal cancer. Otolaryngol Head Neck Surg 3:84–92 Shapiro J, Zeitels S, Fried M (1992) Laser surgery for laryngeal cancer. Otolaryngol Head Neck Surg 3:84–92
45.
Zurück zum Zitat Li JL, Wang L, Liu XY et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274:319–326PubMedCrossRef Li JL, Wang L, Liu XY et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274:319–326PubMedCrossRef
46.
Zurück zum Zitat Lu W, Xiong C, Zhang G et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog–conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886PubMedCentralPubMedCrossRef Lu W, Xiong C, Zhang G et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog–conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Li JL, Day D, Gu M (2008) Ultra low energy threshold for cancer photothermal therapy using transferrin conjugated gold nanorods. Adv Mater 20:3866–3871CrossRef Li JL, Day D, Gu M (2008) Ultra low energy threshold for cancer photothermal therapy using transferrin conjugated gold nanorods. Adv Mater 20:3866–3871CrossRef
48.
Zurück zum Zitat Jain P, Lee K, El-Sayed I, El-Sayed M (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248PubMedCrossRef Jain P, Lee K, El-Sayed I, El-Sayed M (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248PubMedCrossRef
49.
Zurück zum Zitat Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934PubMedCrossRef Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934PubMedCrossRef
50.
Zurück zum Zitat Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179:748–753PubMedCrossRef Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179:748–753PubMedCrossRef
51.
Zurück zum Zitat Neukam F, Stelzle F (2010) Laser tumor treatment in oral and maxillofacial surgery. Phys Proc 5:91–100CrossRef Neukam F, Stelzle F (2010) Laser tumor treatment in oral and maxillofacial surgery. Phys Proc 5:91–100CrossRef
52.
Zurück zum Zitat Hui R, O'Sullivan M (2009) Fiber optic measurement techniques, 1st edn. Elsevier Academic Press, USA Hui R, O'Sullivan M (2009) Fiber optic measurement techniques, 1st edn. Elsevier Academic Press, USA
53.
Zurück zum Zitat Adam C, Mues JM, Knudsen BE (2009) Evaluation of 24 holmium:YAG laser optical fibers for flexible ureteroscopy. J Urol 182:348–354CrossRef Adam C, Mues JM, Knudsen BE (2009) Evaluation of 24 holmium:YAG laser optical fibers for flexible ureteroscopy. J Urol 182:348–354CrossRef
54.
Zurück zum Zitat Verdaasdonk RM, van Swol CF (1997) Laser light delivery systems for medical applications. Phys Med Biol 42:869–894PubMedCrossRef Verdaasdonk RM, van Swol CF (1997) Laser light delivery systems for medical applications. Phys Med Biol 42:869–894PubMedCrossRef
Metadaten
Titel
A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer
verfasst von
Ali Shakeri-Zadeh
Seyed Kamran Kamrava
Mohammad Farhadi
Zahra Hajikarimi
Shayan Maleki
Amirhossein Ahmadi
Publikationsdatum
01.03.2014
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 2/2014
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1399-x

Weitere Artikel der Ausgabe 2/2014

Lasers in Medical Science 2/2014 Zur Ausgabe