Skip to main content
Erschienen in: Lasers in Medical Science 2/2014

01.03.2014 | Original Article

Transcutaneous laser treatment of leg veins

verfasst von: Arne A. Meesters, Luiza H. U. Pitassi, Valeria Campos, Albert Wolkerstorfer, Christine C. Dierickx

Erschienen in: Lasers in Medical Science | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Leg telangiectasias and reticular veins are a common complaint affecting more than 80 % of the population to some extent. To date, the gold standard remains sclerotherapy for most patients. However, there may be some specific situations, where sclerotherapy is contraindicated such as needle phobia, allergy to certain sclerosing agents, and the presence of vessels smaller than the diameter of a 30-gauge needle (including telangiectatic matting). In these cases, transcutaneous laser therapy is a valuable alternative. Currently, different laser modalities have been proposed for the management of leg veins. The aim of this article is to present an overview of the basic principles of transcutaneous laser therapy of leg veins and to review the existing literature on this subject, including the most recent developments. The 532-nm potassium titanyl phosphate (KTP) laser, the 585–600-nm pulsed dye laser, the 755-nm alexandrite laser, various 800–983-nm diode lasers, and the 1,064-nm neodymium yttrium–aluminum–garnet (Nd:YAG) laser and various intense pulsed light sources have been investigated for this indication. The KTP and pulsed dye laser are an effective treatment option for small vessels (<1 mm). The side effect profile is usually favorable to that of longer wavelength modalities. For larger veins, the use of a longer wavelength is required. According to the scarce evidence available, the Nd:YAG laser produces better clinical results than the alexandrite and diode laser. Penetration depth is high, whereas absorption by melanin is low, making the Nd:YAG laser suitable for the treatment of larger and deeply located veins and for the treatment of patients with dark skin types. Clinical outcome of Nd:YAG laser therapy approximates that of sclerotherapy, although the latter is associated with less pain. New developments include (1) the use of a nonuniform pulse sequence or a dual-wavelength modality, inducing methemoglobin formation and enhancing the optical absorption properties of the target structure, (2) pulse stacking and multiple pass laser treatment, (3) combination of laser therapy with sclerotherapy or radiofrequency, and (4) indocyanin green enhanced laser therapy. Future studies will have to confirm the role of these developments in the treatment of leg veins. The literature still lacks double-blind controlled clinical trials comparing the different laser modalities with each other and with sclerotherapy. Such trials should be the focus of future research.
Literatur
1.
Zurück zum Zitat Robertson L, Evans C, Fowkes FG (2008) Epidemiology of chronic venous disease. Phlebology 23:103–111CrossRefPubMed Robertson L, Evans C, Fowkes FG (2008) Epidemiology of chronic venous disease. Phlebology 23:103–111CrossRefPubMed
2.
Zurück zum Zitat Evans CJ, Allan PL, Lee AJ et al (1998) Prevalence of venous reflux in the general population on duplex scanning: the Edinburgh vein study. J Vasc Surg 28:767–776CrossRefPubMed Evans CJ, Allan PL, Lee AJ et al (1998) Prevalence of venous reflux in the general population on duplex scanning: the Edinburgh vein study. J Vasc Surg 28:767–776CrossRefPubMed
3.
Zurück zum Zitat Ruckley CV, Evans CJ, Allan PL et al (2008) Telangiectasia in the Edinburgh Vein Study: epidemiology and association with trunk varices and symptoms. Eur J Vasc Endovasc Surg 36:719–724CrossRefPubMed Ruckley CV, Evans CJ, Allan PL et al (2008) Telangiectasia in the Edinburgh Vein Study: epidemiology and association with trunk varices and symptoms. Eur J Vasc Endovasc Surg 36:719–724CrossRefPubMed
5.
Zurück zum Zitat Mellor RH, Brice G, Stanton AW et al (2007) Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115:1912–1920CrossRefPubMed Mellor RH, Brice G, Stanton AW et al (2007) Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115:1912–1920CrossRefPubMed
6.
7.
Zurück zum Zitat Sebben JE (1989) Sclerotherapy for telangiectasia of the lower extremity. Dermatol Clin 7:129–135PubMed Sebben JE (1989) Sclerotherapy for telangiectasia of the lower extremity. Dermatol Clin 7:129–135PubMed
8.
Zurück zum Zitat Neumann HA, Kockaert MA (2003) The treatment of leg telangiectasia. J Cosmet Dermatol 2:73–81CrossRefPubMed Neumann HA, Kockaert MA (2003) The treatment of leg telangiectasia. J Cosmet Dermatol 2:73–81CrossRefPubMed
9.
Zurück zum Zitat Kern P (2002) Sclerotherapy of varicose leg veins. Technique, indications and complications. Int Angiol 21:40–45PubMed Kern P (2002) Sclerotherapy of varicose leg veins. Technique, indications and complications. Int Angiol 21:40–45PubMed
10.
Zurück zum Zitat Guex JJ (2010) Complications of sclerotherapy: an update. Dermatol Surg 36(Suppl 2):1056–1063CrossRefPubMed Guex JJ (2010) Complications of sclerotherapy: an update. Dermatol Surg 36(Suppl 2):1056–1063CrossRefPubMed
11.
Zurück zum Zitat Lupton JR, Alster TS, Romero P (2002) Clinical comparison of sclerotherapy versus long-pulsed Nd:YAG laser treatment for lower extremity telangiectases. Dermatol Surg 28:694–697CrossRefPubMed Lupton JR, Alster TS, Romero P (2002) Clinical comparison of sclerotherapy versus long-pulsed Nd:YAG laser treatment for lower extremity telangiectases. Dermatol Surg 28:694–697CrossRefPubMed
12.
Zurück zum Zitat Apfelberg DB, Maser MR, Lash H (1976) Argon laser management of cutaneous vascular deformities. A preliminary report. West J Med 124:99–101PubMedCentralPubMed Apfelberg DB, Maser MR, Lash H (1976) Argon laser management of cutaneous vascular deformities. A preliminary report. West J Med 124:99–101PubMedCentralPubMed
13.
Zurück zum Zitat Apfelberg DB, Maser MR, Lash H (1978) Argon laser treatment of cutaneous vascular abnormalities: progress report. Ann Plast Surg 1:14–18CrossRefPubMed Apfelberg DB, Maser MR, Lash H (1978) Argon laser treatment of cutaneous vascular abnormalities: progress report. Ann Plast Surg 1:14–18CrossRefPubMed
14.
Zurück zum Zitat Apfelberg DB, Maser MR, Lash H et al (1984) Use of the argon and carbon dioxide lasers for treatment of superficial venous varicosities of the lower extremity. Lasers Surg Med 4:221–231CrossRefPubMed Apfelberg DB, Maser MR, Lash H et al (1984) Use of the argon and carbon dioxide lasers for treatment of superficial venous varicosities of the lower extremity. Lasers Surg Med 4:221–231CrossRefPubMed
15.
Zurück zum Zitat Arndt KA (1982) Argon laser therapy of small cutaneous vascular lesions. Arch Dermatol 118:220–224CrossRefPubMed Arndt KA (1982) Argon laser therapy of small cutaneous vascular lesions. Arch Dermatol 118:220–224CrossRefPubMed
16.
Zurück zum Zitat Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527CrossRefPubMed Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527CrossRefPubMed
17.
18.
Zurück zum Zitat Sadick NS (2003) Sclerotherapy and ambulatory phlebectomy. In: Bolognia JL, Jorizzo JL, Rapini RP (eds) Dermatology. Mosby, London, pp 2399–2414 Sadick NS (2003) Sclerotherapy and ambulatory phlebectomy. In: Bolognia JL, Jorizzo JL, Rapini RP (eds) Dermatology. Mosby, London, pp 2399–2414
19.
Zurück zum Zitat Braverman IM (1989) Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Invest Dermatol 93:2S–9SCrossRefPubMed Braverman IM (1989) Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Invest Dermatol 93:2S–9SCrossRefPubMed
20.
Zurück zum Zitat Redisch W, Pelzer R (1949) Localized vascular dilatations of the human skin, capillary microscopy and related studies. Am Heart J 37:106–113CrossRefPubMed Redisch W, Pelzer R (1949) Localized vascular dilatations of the human skin, capillary microscopy and related studies. Am Heart J 37:106–113CrossRefPubMed
21.
Zurück zum Zitat McCoppin HH, Hovenic WW, Wheeland RG (2011) Laser treatment of superficial leg veins: a review. Dermatol Surg 37:729–741CrossRefPubMed McCoppin HH, Hovenic WW, Wheeland RG (2011) Laser treatment of superficial leg veins: a review. Dermatol Surg 37:729–741CrossRefPubMed
22.
Zurück zum Zitat Sommer A, Van Mierlo PL, Neumann HA et al (1997) Red and blue telangiectasias. Differences in oxygenation? Dermatol Surg 23:55–59PubMed Sommer A, Van Mierlo PL, Neumann HA et al (1997) Red and blue telangiectasias. Differences in oxygenation? Dermatol Surg 23:55–59PubMed
23.
Zurück zum Zitat Weiss RA, Weiss MA (1993) Doppler ultrasound findings in reticular veins of the thigh subdermic lateral venous system and implications for sclerotherapy. J Dermatol Surg Oncol 19:947–951CrossRefPubMed Weiss RA, Weiss MA (1993) Doppler ultrasound findings in reticular veins of the thigh subdermic lateral venous system and implications for sclerotherapy. J Dermatol Surg Oncol 19:947–951CrossRefPubMed
24.
25.
26.
Zurück zum Zitat Greenwald J, Rosen S, Anderson RR et al (1981) Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser. J Invest Dermatol 77:305–310CrossRefPubMed Greenwald J, Rosen S, Anderson RR et al (1981) Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser. J Invest Dermatol 77:305–310CrossRefPubMed
27.
Zurück zum Zitat Van Gemert M, Welch A (1989) Clinical use of laser–tissue interactions. IEEE Eng Med Biol Mag 8:10–13CrossRefPubMed Van Gemert M, Welch A (1989) Clinical use of laser–tissue interactions. IEEE Eng Med Biol Mag 8:10–13CrossRefPubMed
28.
Zurück zum Zitat Ross EV, Domankevitz Y (2005) Laser treatment of leg veins: physical mechanisms and theoretical considerations. Lasers Surg Med 36:105–116CrossRefPubMed Ross EV, Domankevitz Y (2005) Laser treatment of leg veins: physical mechanisms and theoretical considerations. Lasers Surg Med 36:105–116CrossRefPubMed
29.
Zurück zum Zitat Garden JM, Tan OT, Kerschmann R et al (1986) Effect of dye laser pulse duration on selective cutaneous vascular injury. J Invest Dermatol 87:653–657CrossRefPubMed Garden JM, Tan OT, Kerschmann R et al (1986) Effect of dye laser pulse duration on selective cutaneous vascular injury. J Invest Dermatol 87:653–657CrossRefPubMed
30.
Zurück zum Zitat Dierickx CC, Casparian JM, Venugopalan V et al (1995) Thermal relaxation of port-wine stain vessels probed in vivo: the need for 1–10-millisecond laser pulse treatment. J Invest Dermatol 105:709–714CrossRefPubMed Dierickx CC, Casparian JM, Venugopalan V et al (1995) Thermal relaxation of port-wine stain vessels probed in vivo: the need for 1–10-millisecond laser pulse treatment. J Invest Dermatol 105:709–714CrossRefPubMed
31.
Zurück zum Zitat Anderson RR, Parrish JA (1981) Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med 1:263–276CrossRefPubMed Anderson RR, Parrish JA (1981) Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med 1:263–276CrossRefPubMed
32.
Zurück zum Zitat Malskat W, Poluektova A, Van der Geld C, et al. (2013) Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes and issues for debate. Lasers Med Sci (in press) Malskat W, Poluektova A, Van der Geld C, et al. (2013) Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes and issues for debate. Lasers Med Sci (in press)
33.
Zurück zum Zitat Baumler W, Ulrich H, Hartl A et al (2006) Optimal parameters for the treatment of leg veins using Nd:YAG lasers at 1064 nm. Br J Dermatol 155:364–371CrossRefPubMed Baumler W, Ulrich H, Hartl A et al (2006) Optimal parameters for the treatment of leg veins using Nd:YAG lasers at 1064 nm. Br J Dermatol 155:364–371CrossRefPubMed
34.
Zurück zum Zitat Nelson JS, Milner TE, Anvari B et al (1995) Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch Dermatol 131:695–700CrossRefPubMed Nelson JS, Milner TE, Anvari B et al (1995) Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch Dermatol 131:695–700CrossRefPubMed
35.
Zurück zum Zitat Tong AK, Tan OT, Boll J et al (1987) Ultrastructure: effects of melanin pigment on target specificity using a pulsed dye laser (577 nm). J Invest Dermatol 88:747–752CrossRefPubMed Tong AK, Tan OT, Boll J et al (1987) Ultrastructure: effects of melanin pigment on target specificity using a pulsed dye laser (577 nm). J Invest Dermatol 88:747–752CrossRefPubMed
36.
Zurück zum Zitat Manuskiatti W, Eimpunth S, Wanitphakdeedecha R (2007) Effect of cold air cooling on the incidence of postinflammatory hyperpigmentation after Q-switched Nd:YAG laser treatment of acquired bilateral nevus of Ota like macules. Arch Dermatol 143:1139–1143CrossRefPubMed Manuskiatti W, Eimpunth S, Wanitphakdeedecha R (2007) Effect of cold air cooling on the incidence of postinflammatory hyperpigmentation after Q-switched Nd:YAG laser treatment of acquired bilateral nevus of Ota like macules. Arch Dermatol 143:1139–1143CrossRefPubMed
37.
Zurück zum Zitat Nelson JS, Milner TE, Anvari B et al (1996) Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels. Lasers Surg Med 19:224–229CrossRefPubMed Nelson JS, Milner TE, Anvari B et al (1996) Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels. Lasers Surg Med 19:224–229CrossRefPubMed
38.
Zurück zum Zitat Anvari B, Tanenbaum BS, Milner TE et al (1995) A theoretical study of the thermal response of skin to cryogen spray cooling and pulsed laser irradiation: implications for treatment of port wine stain birthmarks. Phys Med Biol 40:1451–1465CrossRefPubMed Anvari B, Tanenbaum BS, Milner TE et al (1995) A theoretical study of the thermal response of skin to cryogen spray cooling and pulsed laser irradiation: implications for treatment of port wine stain birthmarks. Phys Med Biol 40:1451–1465CrossRefPubMed
39.
Zurück zum Zitat Waldorf HA, Alster TS, McMillan K et al (1997) Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port-wine stain birthmarks. Dermatol Surg 23:657–662PubMed Waldorf HA, Alster TS, McMillan K et al (1997) Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port-wine stain birthmarks. Dermatol Surg 23:657–662PubMed
40.
Zurück zum Zitat Buscher BA, McMeekin TO, Goodwin D (2000) Treatment of leg telangiectasia by using a long-pulse dye laser at 595 nm with and without dynamic cooling device. Lasers Surg Med 27:171–175CrossRefPubMed Buscher BA, McMeekin TO, Goodwin D (2000) Treatment of leg telangiectasia by using a long-pulse dye laser at 595 nm with and without dynamic cooling device. Lasers Surg Med 27:171–175CrossRefPubMed
41.
Zurück zum Zitat Altshuler GB, Zenzie HH, Erofeev AV et al (1999) Contact cooling of the skin. Phys Med Biol 44:1003–1023CrossRefPubMed Altshuler GB, Zenzie HH, Erofeev AV et al (1999) Contact cooling of the skin. Phys Med Biol 44:1003–1023CrossRefPubMed
42.
Zurück zum Zitat Jia W, Tran N, Sun V et al (2012) Photocoagulation of dermal blood vessels with multiple laser pulses in an in vivo microvascular model. Lasers Surg Med 44:144–151CrossRefPubMedCentralPubMed Jia W, Tran N, Sun V et al (2012) Photocoagulation of dermal blood vessels with multiple laser pulses in an in vivo microvascular model. Lasers Surg Med 44:144–151CrossRefPubMedCentralPubMed
43.
Zurück zum Zitat Vincent JR, Jones GT, Hill GB et al (2011) Failure of microvenous valves in small superficial veins is a key to the skin changes of venous insufficiency. J Vasc Surg 54:62S–69SCrossRefPubMed Vincent JR, Jones GT, Hill GB et al (2011) Failure of microvenous valves in small superficial veins is a key to the skin changes of venous insufficiency. J Vasc Surg 54:62S–69SCrossRefPubMed
44.
Zurück zum Zitat Fournier N, Brisot D, Mordon S (2002) Treatment of leg telangiectases with a 532 nm KTP laser in multipulse mode. Dermatol Surg 28:564–571CrossRefPubMed Fournier N, Brisot D, Mordon S (2002) Treatment of leg telangiectases with a 532 nm KTP laser in multipulse mode. Dermatol Surg 28:564–571CrossRefPubMed
45.
Zurück zum Zitat Woo WK, Jasim ZF, Handley JM (2003) 532-nm Nd:YAG and 595-nm pulsed dye laser treatment of leg telangiectasia using ultralong pulse duration. Dermatol Surg 29:1176–1180CrossRefPubMed Woo WK, Jasim ZF, Handley JM (2003) 532-nm Nd:YAG and 595-nm pulsed dye laser treatment of leg telangiectasia using ultralong pulse duration. Dermatol Surg 29:1176–1180CrossRefPubMed
46.
Zurück zum Zitat West TB, Alster TS (1998) Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg 24:221–226PubMed West TB, Alster TS (1998) Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg 24:221–226PubMed
47.
Zurück zum Zitat McMeekin TO (1999) Treatment of spider veins of the leg using a long-pulsed Nd:YAG laser (Versapulse) at 532 nm. J Cutan Laser Ther 1:179–180CrossRefPubMed McMeekin TO (1999) Treatment of spider veins of the leg using a long-pulsed Nd:YAG laser (Versapulse) at 532 nm. J Cutan Laser Ther 1:179–180CrossRefPubMed
48.
Zurück zum Zitat Bernstein EF, Kornbluth S, Brown DB et al (1999) Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser. Dermatol Surg 25:316–320CrossRefPubMed Bernstein EF, Kornbluth S, Brown DB et al (1999) Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser. Dermatol Surg 25:316–320CrossRefPubMed
49.
Zurück zum Zitat Massey RA, Katz BE (1999) Successful treatment of spider leg veins with a high-energy, long-pulse, frequency-doubled neodymium:YAG laser (HELP-G). Dermatol Surg 25:677–680CrossRefPubMed Massey RA, Katz BE (1999) Successful treatment of spider leg veins with a high-energy, long-pulse, frequency-doubled neodymium:YAG laser (HELP-G). Dermatol Surg 25:677–680CrossRefPubMed
50.
Zurück zum Zitat Ozden MG, Bahcivan M, Aydin F et al (2011) Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases. J Dermatolog Treat 22:162–166CrossRefPubMed Ozden MG, Bahcivan M, Aydin F et al (2011) Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases. J Dermatolog Treat 22:162–166CrossRefPubMed
51.
Zurück zum Zitat Spendel S, Prandl EC, Schintler MV et al (2002) Treatment of spider leg veins with the KTP (532 nm) laser—a prospective study. Lasers Surg Med 31:194–201CrossRefPubMed Spendel S, Prandl EC, Schintler MV et al (2002) Treatment of spider leg veins with the KTP (532 nm) laser—a prospective study. Lasers Surg Med 31:194–201CrossRefPubMed
52.
Zurück zum Zitat Faurschou A, Olesen AB, Leonardi-Bee J, et al. (2011) Lasers or light sources for treating port-wine stains. Cochrane Database Syst Rev CD007152 Faurschou A, Olesen AB, Leonardi-Bee J, et al. (2011) Lasers or light sources for treating port-wine stains. Cochrane Database Syst Rev CD007152
53.
Zurück zum Zitat Bernstein EF, Lee J, Lowery J et al (1998) Treatment of spider veins with the 595 nm pulsed-dye laser. J Am Acad Dermatol 39:746–750CrossRefPubMed Bernstein EF, Lee J, Lowery J et al (1998) Treatment of spider veins with the 595 nm pulsed-dye laser. J Am Acad Dermatol 39:746–750CrossRefPubMed
54.
Zurück zum Zitat Hsia J, Lowery JA, Zelickson B (1997) Treatment of leg telangiectasia using a long-pulse dye laser at 595 nm. Lasers Surg Med 20:1–5CrossRefPubMed Hsia J, Lowery JA, Zelickson B (1997) Treatment of leg telangiectasia using a long-pulse dye laser at 595 nm. Lasers Surg Med 20:1–5CrossRefPubMed
55.
Zurück zum Zitat Reichert D (1998) Evaluation of the long-pulse dye laser for the treatment of leg telangiectasias. Dermatol Surg 24:737–740PubMed Reichert D (1998) Evaluation of the long-pulse dye laser for the treatment of leg telangiectasias. Dermatol Surg 24:737–740PubMed
56.
Zurück zum Zitat Kono T, Yamaki T, Ercocen AR et al (2004) Treatment of leg veins with the long pulse dye laser using variable pulse durations and energy fluences. Lasers Surg Med 35:62–67CrossRefPubMed Kono T, Yamaki T, Ercocen AR et al (2004) Treatment of leg veins with the long pulse dye laser using variable pulse durations and energy fluences. Lasers Surg Med 35:62–67CrossRefPubMed
57.
Zurück zum Zitat Alora MB, Stern RS, Arndt KA et al (1999) Comparison of the 595 nm long-pulse (1.5 msec) and ultralong-pulse (4 msec) lasers in the treatment of leg veins. Dermatol Surg 25:445–449CrossRefPubMed Alora MB, Stern RS, Arndt KA et al (1999) Comparison of the 595 nm long-pulse (1.5 msec) and ultralong-pulse (4 msec) lasers in the treatment of leg veins. Dermatol Surg 25:445–449CrossRefPubMed
58.
Zurück zum Zitat Rubin IK, Farinelli WA, Doukas A et al (2012) Optimal wavelengths for vein-selective photothermolysis. Lasers Surg Med 44:152–157CrossRefPubMed Rubin IK, Farinelli WA, Doukas A et al (2012) Optimal wavelengths for vein-selective photothermolysis. Lasers Surg Med 44:152–157CrossRefPubMed
59.
Zurück zum Zitat McDaniel DH, Ash K, Lord J et al (1999) Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg 25:52–58CrossRefPubMed McDaniel DH, Ash K, Lord J et al (1999) Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg 25:52–58CrossRefPubMed
60.
Zurück zum Zitat Ross EV, Meehan KJ, Gilbert S et al (2009) Optimal pulse durations for the treatment of leg telangiectasias with an alexandrite laser. Lasers Surg Med 41:104–109CrossRefPubMed Ross EV, Meehan KJ, Gilbert S et al (2009) Optimal pulse durations for the treatment of leg telangiectasias with an alexandrite laser. Lasers Surg Med 41:104–109CrossRefPubMed
61.
Zurück zum Zitat Trelles MA, Allones I, Alvarez J et al (2006) The 800-nm diode laser in the treatment of leg veins: assessment at 6 months. J Am Acad Dermatol 54:282–289CrossRefPubMed Trelles MA, Allones I, Alvarez J et al (2006) The 800-nm diode laser in the treatment of leg veins: assessment at 6 months. J Am Acad Dermatol 54:282–289CrossRefPubMed
62.
Zurück zum Zitat Passeron T, Olivier V, Duteil L et al (2003) The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol 48:768–774CrossRefPubMed Passeron T, Olivier V, Duteil L et al (2003) The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol 48:768–774CrossRefPubMed
63.
Zurück zum Zitat Eremia S, Li C, Umar SH (2002) A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3–3 mm leg veins. Dermatol Surg 28:224–230CrossRefPubMed Eremia S, Li C, Umar SH (2002) A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3–3 mm leg veins. Dermatol Surg 28:224–230CrossRefPubMed
64.
Zurück zum Zitat Rogachefsky AS, Silapunt S, Goldberg DJ (2002) Nd:YAG laser (1064 nm) irradiation for lower extremity telangiectases and small reticular veins: efficacy as measured by vessel color and size. Dermatol Surg 28:220–223CrossRefPubMed Rogachefsky AS, Silapunt S, Goldberg DJ (2002) Nd:YAG laser (1064 nm) irradiation for lower extremity telangiectases and small reticular veins: efficacy as measured by vessel color and size. Dermatol Surg 28:220–223CrossRefPubMed
65.
Zurück zum Zitat Omura NE, Dover JS, Arndt KA et al (2003) Treatment of reticular leg veins with a 1064 nm long-pulsed Nd:YAG laser. J Am Acad Dermatol 48:76–81CrossRefPubMed Omura NE, Dover JS, Arndt KA et al (2003) Treatment of reticular leg veins with a 1064 nm long-pulsed Nd:YAG laser. J Am Acad Dermatol 48:76–81CrossRefPubMed
66.
Zurück zum Zitat Munia MA, Wolosker N, Munia CG et al (2012) Comparison of laser versus sclerotherapy in the treatment of lower extremity telangiectases: a prospective study. Dermatol Surg 38:635–639CrossRefPubMed Munia MA, Wolosker N, Munia CG et al (2012) Comparison of laser versus sclerotherapy in the treatment of lower extremity telangiectases: a prospective study. Dermatol Surg 38:635–639CrossRefPubMed
67.
Zurück zum Zitat Levy JL, Elbahr C, Jouve E et al (2004) Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment. Lasers Surg Med 34:273–276CrossRefPubMed Levy JL, Elbahr C, Jouve E et al (2004) Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment. Lasers Surg Med 34:273–276CrossRefPubMed
68.
Zurück zum Zitat Coles CM, Werner RS, Zelickson BD (2002) Comparative pilot study evaluating the treatment of leg veins with a long pulse ND:YAG laser and sclerotherapy. Lasers Surg Med 30:154–159CrossRefPubMed Coles CM, Werner RS, Zelickson BD (2002) Comparative pilot study evaluating the treatment of leg veins with a long pulse ND:YAG laser and sclerotherapy. Lasers Surg Med 30:154–159CrossRefPubMed
69.
Zurück zum Zitat Fodor L, Ramon Y, Fodor A et al (2006) A side-by-side prospective study of intense pulsed light and Nd:YAG laser treatment for vascular lesions. Ann Plast Surg 56:164–170CrossRefPubMed Fodor L, Ramon Y, Fodor A et al (2006) A side-by-side prospective study of intense pulsed light and Nd:YAG laser treatment for vascular lesions. Ann Plast Surg 56:164–170CrossRefPubMed
70.
Zurück zum Zitat Parlette EC, Groff WF, Kinshella MJ et al (2006) Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med 38:98–105CrossRefPubMed Parlette EC, Groff WF, Kinshella MJ et al (2006) Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med 38:98–105CrossRefPubMed
71.
Zurück zum Zitat Sadick NS (2003) Laser treatment with a 1064-nm laser for lower extremity class I–III veins employing variable spots and pulse width parameters. Dermatol Surg 29:916–919CrossRefPubMed Sadick NS (2003) Laser treatment with a 1064-nm laser for lower extremity class I–III veins employing variable spots and pulse width parameters. Dermatol Surg 29:916–919CrossRefPubMed
72.
Zurück zum Zitat Sadick NS (2001) Long-term results with a multiple synchronized-pulse 1064 nm Nd:YAG laser for the treatment of leg venulectasias and reticular veins. Dermatol Surg 27:365–369CrossRefPubMed Sadick NS (2001) Long-term results with a multiple synchronized-pulse 1064 nm Nd:YAG laser for the treatment of leg venulectasias and reticular veins. Dermatol Surg 27:365–369CrossRefPubMed
73.
Zurück zum Zitat Sadick NS, Prieto VG, Shea CR et al (2001) Clinical and pathophysiologic correlates of 1064-nm Nd:Yag laser treatment of reticular veins and venulectasias. Arch Dermatol 137:613–617PubMed Sadick NS, Prieto VG, Shea CR et al (2001) Clinical and pathophysiologic correlates of 1064-nm Nd:Yag laser treatment of reticular veins and venulectasias. Arch Dermatol 137:613–617PubMed
74.
Zurück zum Zitat Goldman MP, Eckhouse S (1996) Photothermal sclerosis of leg veins. ESC Medical Systems, LTD Photoderm VL Cooperative Study Group. Dermatol Surg 22:323–330PubMed Goldman MP, Eckhouse S (1996) Photothermal sclerosis of leg veins. ESC Medical Systems, LTD Photoderm VL Cooperative Study Group. Dermatol Surg 22:323–330PubMed
75.
Zurück zum Zitat Schroeter C, Wilder D, Reineke T et al (1997) Clinical significance of an intense, pulsed light source on leg telangiectasias of up to 1 mm diameter. Eur J Dermatol 7:38–42 Schroeter C, Wilder D, Reineke T et al (1997) Clinical significance of an intense, pulsed light source on leg telangiectasias of up to 1 mm diameter. Eur J Dermatol 7:38–42
76.
Zurück zum Zitat Mordon S, Brisot D, Fournier N (2003) Using a "non uniform pulse sequence" can improve selective coagulation with a Nd:YAG laser (1.06 microm) thanks to Met-hemoglobin absorption: a clinical study on blue leg veins. Lasers Surg Med 32:160–170CrossRefPubMed Mordon S, Brisot D, Fournier N (2003) Using a "non uniform pulse sequence" can improve selective coagulation with a Nd:YAG laser (1.06 microm) thanks to Met-hemoglobin absorption: a clinical study on blue leg veins. Lasers Surg Med 32:160–170CrossRefPubMed
77.
Zurück zum Zitat Trelles MA, Weiss R, Moreno-Moragas J et al (2010) Treatment of leg veins with combined pulsed dye and Nd:YAG lasers: 60 patients assessed at 6 months. Lasers Surg Med 42:609–614CrossRefPubMed Trelles MA, Weiss R, Moreno-Moragas J et al (2010) Treatment of leg veins with combined pulsed dye and Nd:YAG lasers: 60 patients assessed at 6 months. Lasers Surg Med 42:609–614CrossRefPubMed
78.
Zurück zum Zitat Tanghetti E, Sherr E (2003) Treatment of telangiectasia using the multi-pass technique with the extended pulse width, pulsed dye laser (Cynosure V-Star). J Cosmet Laser Ther 5:71–75CrossRefPubMed Tanghetti E, Sherr E (2003) Treatment of telangiectasia using the multi-pass technique with the extended pulse width, pulsed dye laser (Cynosure V-Star). J Cosmet Laser Ther 5:71–75CrossRefPubMed
79.
Zurück zum Zitat Kauvar AN, Lou WW (2000) Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol 136:1371–1375PubMed Kauvar AN, Lou WW (2000) Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol 136:1371–1375PubMed
80.
Zurück zum Zitat Brunnberg S, Lorenz S, Landthaler M et al (2002) Evaluation of the long pulsed high fluence alexandrite laser therapy of leg telangiectasia. Lasers Surg Med 31:359–362CrossRefPubMed Brunnberg S, Lorenz S, Landthaler M et al (2002) Evaluation of the long pulsed high fluence alexandrite laser therapy of leg telangiectasia. Lasers Surg Med 31:359–362CrossRefPubMed
81.
Zurück zum Zitat Moreno-Moraga J, Hernandez E, Royo J et al (2013) Optimal and safe treatment of spider leg veins measuring less than 1.5 mm on skin type IV patients, using repeated low-fluence Nd:YAG laser pulses after polidocanol injection. Lasers Med Sci 28:925–933CrossRefPubMed Moreno-Moraga J, Hernandez E, Royo J et al (2013) Optimal and safe treatment of spider leg veins measuring less than 1.5 mm on skin type IV patients, using repeated low-fluence Nd:YAG laser pulses after polidocanol injection. Lasers Med Sci 28:925–933CrossRefPubMed
82.
Zurück zum Zitat Goldman MP, Fitzpatrick RE (1990) Pulsed-dye laser treatment of leg telangiectasia: with and without simultaneous sclerotherapy. J Dermatol Surg Oncol 16:338–344CrossRefPubMed Goldman MP, Fitzpatrick RE (1990) Pulsed-dye laser treatment of leg telangiectasia: with and without simultaneous sclerotherapy. J Dermatol Surg Oncol 16:338–344CrossRefPubMed
83.
Zurück zum Zitat Sadick NS, Trelles MA (2005) A clinical, histological, and computer-based assessment of the Polaris LV, combination diode, and radiofrequency system, for leg vein treatment. Lasers Surg Med 36:98–104CrossRefPubMed Sadick NS, Trelles MA (2005) A clinical, histological, and computer-based assessment of the Polaris LV, combination diode, and radiofrequency system, for leg vein treatment. Lasers Surg Med 36:98–104CrossRefPubMed
84.
Zurück zum Zitat Trelles MA, Martin-Vazquez M, Trelles OR et al (2006) Treatment effects of combined radio-frequency current and a 900 nm diode laser on leg blood vessels. Lasers Surg Med 38:185–195CrossRefPubMed Trelles MA, Martin-Vazquez M, Trelles OR et al (2006) Treatment effects of combined radio-frequency current and a 900 nm diode laser on leg blood vessels. Lasers Surg Med 38:185–195CrossRefPubMed
85.
Zurück zum Zitat Chess C (2004) Prospective study on combination diode laser and radiofrequency energies (ELOS) for the treatment of leg veins. J Cosmet Laser Ther 6:86–90CrossRefPubMed Chess C (2004) Prospective study on combination diode laser and radiofrequency energies (ELOS) for the treatment of leg veins. J Cosmet Laser Ther 6:86–90CrossRefPubMed
86.
Zurück zum Zitat Shafirstein G, Moreno M, Klein A et al (2011) Treatment of leg veins with indocyanine green and lasers investigated with mathematical modelling. Int J Hyperthermia 27:771–781CrossRefPubMed Shafirstein G, Moreno M, Klein A et al (2011) Treatment of leg veins with indocyanine green and lasers investigated with mathematical modelling. Int J Hyperthermia 27:771–781CrossRefPubMed
87.
Zurück zum Zitat Klein A, Baumler W, Koller M et al (2012) Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial. Lasers Surg Med 44:369–376CrossRefPubMed Klein A, Baumler W, Koller M et al (2012) Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial. Lasers Surg Med 44:369–376CrossRefPubMed
88.
Zurück zum Zitat Klein A, Buschmann M, Babilas P et al (2013) Indocyanine green-augmented diode laser therapy vs. long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: a randomized controlled trial. Br J Dermatol 169:365–373CrossRefPubMed Klein A, Buschmann M, Babilas P et al (2013) Indocyanine green-augmented diode laser therapy vs. long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: a randomized controlled trial. Br J Dermatol 169:365–373CrossRefPubMed
89.
Zurück zum Zitat Schwartz L, Maxwell H (2011) Sclerotherapy for lower limb telangiectasias. Cochrane Database Syst Rev CD008826 Schwartz L, Maxwell H (2011) Sclerotherapy for lower limb telangiectasias. Cochrane Database Syst Rev CD008826
Metadaten
Titel
Transcutaneous laser treatment of leg veins
verfasst von
Arne A. Meesters
Luiza H. U. Pitassi
Valeria Campos
Albert Wolkerstorfer
Christine C. Dierickx
Publikationsdatum
01.03.2014
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 2/2014
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1483-2

Weitere Artikel der Ausgabe 2/2014

Lasers in Medical Science 2/2014 Zur Ausgabe