Skip to main content
Log in

Precise Asymptotics in the Law of the Iterated Logarithm of Moving-Average Processes

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

In this paper, we discuss the moving-average process \( X_{k} = {\sum\nolimits_{i = - \infty }^\infty {\alpha _{{i + k}} \varepsilon _{i} } } \), where {α i ;-∞ < i < ∞} is a doubly infinite sequence of identically distributed φ-mixing or negatively associated random variables with mean zeros and finite variances, {α i ;-∞ < i < ∞} is an absolutely summable sequence of real numbers. Set \( S_{n} = {\sum\nolimits_{k = 1}^n {X_{k} ,n \geqslant 1} } \). Suppose that \( \sigma ^{2} = E\varepsilon ^{2}_{1} + 2{\sum\nolimits_{k = 2}^\infty {E\varepsilon _{1} \varepsilon _{k} } } > 0 \). We prove that for any \( \delta \geqslant 0,\;{\text{if}}\;E{\left[ {\varepsilon ^{2}_{1} {\left( {\log \;\log {\left| {\varepsilon _{1} } \right|}} \right)}^{{\delta - 1}} } \right]} < \infty \),

$$ {\mathop {\lim }\limits_{ \in \searrow o} } \in ^{{2\delta + 2}} {\sum\limits_{n = 1}^\infty {\frac{{{\left( {\log \;\log \;n} \right)}^{\delta } }} {{n\;\log \;n}}} }P{\left\{ {{\left| {S_{n} } \right|} \geqslant \varepsilon \tau {\sqrt {2n\;\log \;\log \;n} }} \right\}} = \frac{1} {{{\left( {\delta + 1} \right)}{\sqrt \pi }}}\Gamma {\left( {\delta + 3/2} \right)}, $$

, and if \( E{\left[ {\varepsilon ^{2}_{1} {\left( {\log {\left| {\varepsilon _{1} } \right|}} \right)}^{{\delta - 1}} } \right]} < \infty \),

$$ {\mathop {\lim }\limits_{ \in \searrow o} } \in ^{{2\delta + 2}} {\sum\limits_{n = 1}^\infty {\frac{{{\left( {\log \;n} \right)}\delta }} {n}} }P{\left\{ {{\left| {S_{n} } \right|} \geqslant \varepsilon \tau {\sqrt {n\;\log \;n} }} \right\}} = \frac{{\mu ^{{{\left( {2\delta + 2} \right)}}} }} {{\delta + 1}}\tau ^{{2\delta + 2}} , $$

where \( \tau = \sigma \cdot {\sum\nolimits_{i = - \infty }^\infty {\alpha _{i} ,\Gamma {\left( \cdot \right)}} } \) is a Gamma function and μ(2δ+2) stands for the (2δ + 2)-th absolute moment of the standard normal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burton, R. M., Dehling, H.: Large deviations for some weakly dependent random process. Statist. Probab. Lett., 9, 397–401 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yang, X. Y.: The law of the iterated logarithm and stochastic index central limit theorem of B-valued stationary linear processes. Chin. Ann. of Math., 17A, 703–714 (1996)

    Google Scholar 

  3. Li, D. L., Rao, M. B., Wang, X. C.: Complete convergence of moving average processes. Statist. Probab. Lett., 14, 111–114 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, L. X.: Complete convergence of moving average processes under dependence assumptions. Statist. Probab. Lett., 30, 165–170 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gut, A., Spătaru, A.: Precise asymptotics in the law of the iterated logarithm. Ann. Probab., 28, 1870–1883 (2000b)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gut, A., Spătaru, A.: Precise asymptotics in the Baum–Katz and Davis laws of large numbers. Jour. Math. Anal. Appl., 248, 233–246 (2000a)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shao, Q. M.: A moment inequality and its application. Acta Math. Sinica, Chinese Series, 31, 736–747 (1988)

    MATH  Google Scholar 

  8. Shao, Q. M.: Almost sure invariance principles for mixing sequences of random variables. Stochastic Processes Appl., 48, 319–334 (1993)

    Article  MATH  Google Scholar 

  9. Kim, T. S., Baek, J. I.: A central limit theorem for stationary linear processes generated by linearly positively quadrant-dependent process. Statist. Probab. Lett., 51, 299–305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, L. X., Precise rates in the law of the iterated logarithm, Manuscript, 2001

  11. Zhang, L. X.: Some limit theorems on the law of the iterated logarithm of NA sequences. Acta Math. Sinica, Chinese Series, 47(3), 541–552 (2004)

    MATH  Google Scholar 

  12. Su, C., Zhao, L. C., Wang, Y. B.: The moment inequalities and weak convergence for negatively associated sequences. Science in China, 40A, 172–182 (1997)

    Google Scholar 

  13. Billingsley, P.: Convergence of Probability Measures, Wiley, New York, 1968

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xia Li.

Additional information

Research supported by National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.X., Zhang, L.X. Precise Asymptotics in the Law of the Iterated Logarithm of Moving-Average Processes. Acta Math Sinica 22, 143–156 (2006). https://doi.org/10.1007/s10114-005-0542-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0542-4

Keywords

MR (2000) Subject Classification

Navigation