Skip to main content
Erschienen in: Gastric Cancer 4/2015

Open Access 01.10.2015 | Original Article

Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer

verfasst von: Christine Böger, Viktoria S. Warneke, Hans-Michael Behrens, Holger Kalthoff, Simon L. Goodman, Thomas Becker, Christoph Röcken

Erschienen in: Gastric Cancer | Ausgabe 4/2015

Abstract

Background

We investigated the expression of two αv integrins, αvβ3 and αvβ5, in gastric cancer (GC) by testing the following hypotheses: that these molecules are expressed in GC; that they are implicated in GC biology; that they help to distinguish between the two major histological subtypes of GC, according to Laurén; and that they are prognostically relevant.

Methods

Formalin-fixed and paraffin-embedded tissue samples from 482 GC samples were stained immunohistochemically using rabbit monoclonal antibodies directed against αvβ3 (EM22703) and αvβ5 (EM09902). Immunostaining of tumor, stroma, and endothelial cells was evaluated separately by the quantity and intensity, generating an immunoreactivity score. The immunoreactivity score of both antibodies was correlated with clinicopathology data and patient survival.

Results

Each integrin was expressed in at least one tumor component in all GCs. Both were expressed significantly more often in the intestinal phenotype according to Laurén. Moreover, patients who grouped as “positive” for expression of αvβ3 on endothelial cells, and patients with an intestinal type GC, grouped as “negative” for expression of αvβ5 on stroma cells, had significantly longer survival. The expression of αvβ5 on stroma cells was confirmed to be an independent prognostic factor of intestinal-type GC.

Conclusion

The expression of αvβ3 and αvβ5 in at least one tumor component in all GC samples is an interesting new result that should form a basis for further investigations; for example, regarding selective integrin antagonists and the value of αvβ3 and αvβ5 as putative prognostic biomarkers. Moreover, both markers might be helpful in the routine classification of GC subtypes.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s10120-014-0435-2) contains supplementary material, which is available to authorized users.
An abstract of similar content was presented orally at the 98th Annual Meeting of the German Society of Pathology, which was held in Berlin from 12 to 15 June 2014.

Introduction

In recent decades we have witnessed major advances in the understanding of the epidemiology, pathology, and pathogenesis of gastric cancer (GC). Infection with Helicobacter pylori or Epstein–Barr virus and dietary and lifestyle factors contribute to the risk of developing GC. This progress has been accompanied by the introduction of chemotherapy for GC, which is evolving continuously and which has improved patients’ survival [13]. Evidence is accumulating that patient prognosis and treatment response depend not only on the tumor stage but also on tumor-specific alterations of both gene expression and various signaling pathways. The two major histological subtypes of GC according to Laurén, diffuse-type and intestinal-type GC, have distinct tumor dissemination patterns and show diverse pathogeneses and expression profiles, likely resulting from molecular differences in tumor epithelial and stroma cells [4, 5]. Although the distinction between diffuse and intestinal subtype in GC has prognostic significance, it is still widely neglected in patient-tailored treatment of GC [6, 7].
Integrins are a family of 24 heterodimeric, multifunctional glycoproteins. As cell adhesion molecules and cell surface receptors, they mediate cell-to-cell and cell to extracellular matrix interactions, and are involved in a great variety of physiological and pathological processes [8]. They are composed of an α subunit, and a β subunit that connect to the cytoskeleton and interact with multiple signaling pathways; the α–β combination determines integrin ligand binding specificity and intracellular signaling [9]. Integrins are important regulators of differentiation, tumor growth, survival, migration, and invasion. In malignant tumors, they are involved in several processes that characterize the tumor phenotype [10]. Several integrin heterodimers have already been shown to be involved in GC biology and to have a significant value as prognostic markers. An increased expression of integrin αvβ6 is linked significantly with reduced survival, lymph node metastasis, and the number of cancer-associated fibroblasts, and integrin α5β1 is described to be significantly associated with tumor differentiation, TNM stage, and recurrence [1115]. Recently, integrins, particularly αvβ3 and αvβ5, have been recognized as putative targets for the treatment of several cancers, which has spurred research on integrins in cancer biology [1619]. Thus, the characterization of integrin distribution in human tumors is of great interest. At present little is known about the expression of integrins αvβ3 and αvβ5 in GC, mainly owing to the lack of antibodies suitable for use on formalin-fixed and paraffin-embedded (FFPE) tissue [20]. Only two studies to date have focused on integrins αvβ3 and αvβ5 in GC. Those studies differ significantly from our study, as they investigated only 19 and 55 cases, respectively, and relied on frozen tissue sections. Also, owing to the small number of cases, they were unable to correlate the expression pattern of αvβ3 and αvβ5 in GC with clinicopathological patient characteristics [12, 21].
Recently, comprehensive molecular characterization including whole-genome sequencing was performed in GC and nontumor pairs for integrative genomic analysis of GC [22, 23]: 20 of 26 genes of the integrin subunits were deregulated in GC pathways, involving also cell adherens junctions, angiogenesis, and focal adhesion. Thus, deregulation of integrin expression may be a tumor-biological hallmark of GC or its specific subtypes. However, data on integrin expression on a protein level in GC are still sparse, and validation of genomic data is urgently needed. Here we investigated the expression of αvβ3 and αvβ5 in GC on the protein level, examining the following questions:
1.
Are integrins expressed in GC?
 
2.
Are integrins implicated in GC biology?
 
3.
Do integrins discriminate the GC subtypes?
 
4.
Is the expression of integrins prognostically relevant?
 

Materials and methods

Study population

From the archive of the Institute of Pathology, University Hospital Kiel, we identified 611 Caucasian patients who underwent either total or partial gastrectomy for adenocarcinoma of the stomach or esophagogastric junction between 1997 and 2009. The following patient characteristics were retrieved: type of surgery, age at diagnosis, gender, tumor size, tumor localization, tumor type, tumor grade, depth of invasion, number of lymph nodes resected, and number of lymph nodes with metastases. Each resected specimen underwent gross sectioning and histological examination by surgical pathologists. The date of patient death was obtained from the Epidemiological Cancer Registry of the state of Schleswig–Holstein, Germany. Follow-up data for those patients who were still alive were retrieved from hospital records and general practitioners. Ethical approval was obtained from the local ethical review board (D 453/10). All patient data were pseudonymized prior to inclusion in the study. Tissue was included if (1) an adenocarcinoma of the stomach or esophagogastric junction was confirmed histologically, (2) the date of death or survival data were available, and (3) the overall tumor mass was large enough to get three tissue microarray (TMA) punches. Exclusion criteria were defined as follows: (1) histological examination identified a tumor type other than adenocarcinoma; (2) patients had undergone perioperative chemotherapy or radiotherapy; and (3) the date of the patient’s death or survival data had not been recorded.
In total, 482 patients fulfilled all study inclusion criteria. The clinicopathological patient characteristics are summarized in Table 1. In accordance with Laurén, an intestinal type was found in 247 patients (51.2 %), a diffuse type was found in 152 patients (31.5 %), a mixed type was found in 30 patients (6.2 %), and an unclassifiable type was found in 53 patients (11.0 %).
Table 1
Clinico-pathological patient characteristics
Patients (n)
482
Age (years)
 Mean (range) ± SD
67.9 (33–92) ± 11.1
 Median
68.0
Gender, n (%)
 Men
297 (61.6)
 Women
185 (38.4)
Lauren phenotype, n (%)
 Intestinal
247 (51.2)
 Diffuse
152 (31.5)
 Mixed
30 (6.2)
 Unclassified
53 (11.0)
Localization, n (%)
 Proximal
149 (30.9)
 Distal
333 (69.1)
pT-category, n (%)
 pT1a
13 (2.7)
 pT1b
49 (10.2)
 pT2
56 (11.6)
 pT3
190 (39.4)
 pT4a
134 (27.8)
 pT4b
40 (8.3)
pN-category, n (valid  %)
 pN0
138 (28.8)
 pN1
67 (14.0)
 pN2
85 (17.7)
 pN3 (a/b)
189 (39.5)
 Missing
3
UICC stage (7th ed.), n (valid  %)
 IA
49 (10.4)
 IB
32 (6.8)
 IIA
58 (12.3)
 IIB
47 (9.9)
 IIIA
55 (11.6)
 IIIB
83 (17.5)
 IIIC
66 (14.0)
 IV
83 (17.5)
 Missing
9
Stage (“Kiel proposal”), n (valid  %)
 I
49 (10.2)
 II
84 (17.5)
 IIIA
49 (10.2)
 IIIB
153 (31.9)
 IV
145 (30.2)
 Missing
2
Resection margin, n (%)
 pR0
403 (83.6)
 pR1/2
54 (11.2)
 pRx
25 (5.2)
Lymphatic invasion, n (valid  %)
 pL0
228 (48.8)
 pL1
239 (51.2)
 Missing
15
Venous invasion, n (valid  %)
 pV0
413 (88.8)
 pV1
52 (11.2)
 Missing
17
Resected lymph nodes, n (valid  %)
 ≤16
195 (41.6)
 >16
274 (58.4)
 Missing
13
Positive lymph nodes, n (valid  %)
 0
134 (28.6)
 1–2
67 (14.3)
 ≥3
267 (57.1)
 Missing
14
Tumor grade, n (valid  %)
 G1/G2
111 (23.7)
 G3/G4
357 (76.3)
 Missing
14
Follow-up data, n (%)
 Dead
335 (69.5)
 Alive
131 (27.2)
 Unknown
16 (3.3)

Histology

Tissue specimens were fixed in formalin and embedded in paraffin. Deparaffinized sections were stained with hematoxylin and eosin. Histological reexamination of primary tissue sections was done for all cases to ensure if inclusion criteria were confirmed. Tumors were classified according to the Laurén classification [4] and were reexamined by two surgical pathologists. The pTNM stage of all study patients was determined according to the seventh edition of the Union for International Cancer Control (UICC) guidelines [24] and the recent proposal (Kiel stage) of Warneke et al. [25].

Tissue microarray construction

FFPE tissue samples were used to generate TMAs as described previously [26]. Briefly, three morphologically representative regions of the paraffin “donor” blocks (tumor) were chosen, and tissue cylinders of 1.5-mm diameter were punched from these areas. Afterwards, the tissue cylinders were inserted into a new “recipient” paraffin block using a custom-built instrument (Beecher Instruments, Silver Spring, MD, USA). The new recipient paraffin blocks were warmed in a 60 °C heating cabinet for 7 min to create a sufficient bond between the tumor tissue and the recipient block paraffin. Then, 2.5-μm-thick serial sections were obtained from the new recipient paraffin blocks, dried in a 60 °C heating cabinet for 6 h, and stored in polystyrene slide storage boxes at 8 °C until use.

Immunohistochemistry

For immunohistochemistry we used two monoclonal rabbit antibodies, directed against αvβ3 (EM22703) and αvβ5 (EM09902). The biochemical specificity of the antibodies against integrins, which were used in this study, was precisely defined previously [20]. All immunoreactions for validation used the Ventana BenchMark XT automated slide staining system using the reaction buffer ULTRA LCS, EZ Prep (75 °C; 4 min), protease 2 (12 min), UV inhibitor, ultraView Universal DAB, hematoxylin II, and bluing reagent (all reagents from Roche Diagnostics, Mannheim, Germany). Antibodies were diluted in antibody diluent (Zytomed Systems, Berlin, Germany) and were applied at 10 µg/ml for 36 min at 36 °C (anti-αvβ3), or 0.1 µg/ml for 40 min at 40 °C (anti-αvβ5). To determine the optimal antibody dilution, kidney sections were stained with serial dilutions of the primary antibodies (1 ng to 100 μg/ml). Distinctive staining patterns of αvβ3 (mainly glomerular) and αvβ5 (glomerular and descending tubuli) were used as reference positive controls for calibration and initial titration of the antibodies. Rabbit IgG preimmune sera (Abcam, Cambridge, UK) served as negative controls. Negative and positive controls were applied in parallel for each staining series. Additionally, we conducted immunohistochemistry with a monoclonal antibody directed against E-cadherin as previously described [6]. The E-cadherin staining results were correlated with those of αvβ3 and αvβ5.

Study design

TMA sections from each tumor were stained with antibodies directed against αvβ3 and αvβ5. The staining results were correlated with clinicopathology and survival data.

Evaluation of immunostaining

The quantity, intensity, and localization of immunoreactivity of both antibodies were evaluated by applying an immunoreactivity scoring system. Immunoreactivity was evaluated separately for tumor cells, stroma cells, and endothelial cells. Stroma cells included all cells of the tumor stroma (e.g. fibroblasts), and excluded endothelial cells, which were evaluated separately.
The previously described immunoreactivity scoring system [27] consisted of two components. Category A rated the percentage of immunoreactive cells and was graded as 0 (negative), 1 (up to 10 % positive cells), 2 (10–50 % positive cells), 3 (51–80 % positive cells), and 4 (81–100 % positive cells). Category B documented the intensity of immunostaining as 0 (no immunostaining), 1 (weak), 2 (moderate), or 3 (strong). The addition of category A and category B resulted in an immunoreactivity score (IRS), with was separately applied for tumor cells and stroma cells. The IRS ranged from 0 to 7 for tumor cells and from 0 to 7 for stroma cells. The intensity of the endothelial immunoreaction was rated as 0 (negative), 1 (weak), 2 (moderate), or 3 (strong).

Statistical analysis

Statistical analyses were done using SPSS 20.0 (IBM, New York, NY, USA). For comparison purposes, the IRS for tumor cells, the IRS for stroma cells, and the endothelial immunoreaction were partitioned at the median, and patients below the median were classified as “negative.” Median overall survival was determined using the Kaplan–Meier method, and the log-rank test was used to determine significance. To investigate the prognostic relevance, we included all variables having p < 0.100 in multivariate analysis using a Cox regression model and the backward logistic regression method (p in and p out = 0.05) to reduce the model to the independent variables. The significance of correlation between clinicopathological parameters and each antigen’s IRS was tested using Fisher’s exact test. For parameters of ordinal scale (T category, N category, tumor stage), we applied Kendall’s tau test instead. To account for the effects of multiple testing, we applied the explorative Simes (Benjamini–Hochberg) procedure [28]. We considered p ≤ 0.05 statistically significant. No adjustments were made.

Results

Staining results

Both αvβ3 and αvβ5 were expressed in at least one tumor component in all GC samples investigated (Fig. 1). Expression in tumor cells was mainly membranous. In cases with a strong membranous and/or stromal expression, an additional light cytoplasmic staining was observed.

Integrin αvβ3

Integrin αvβ3 was expressed in 119 of 457 cases (26.0 %) in tumor cells. The percentage of stained tumor cells ranged from grade 0 to grade 4 (median grade 0), the staining intensity ranged from 0 (no immunostaining) to 3 (strong immunoreaction; median 0), and the tumor cell IRS ranged from 0 to 7 (median 0). Dichotomized by the median, 119 cases (26.0 %) were classified as positive and 338 cases (74.0 %) were classified as negative. In stroma cells, αvβ3 was expressed in 420 of 457 cases (91.9 %). The percentage of stained stroma cells ranged from grade 0 to grade 4 (median grade 1), the staining intensity ranged from 0 to 3 (median 1), and the stroma cell IRS ranged from 0 to 7 (median 3). Dichotomized by the median, 247 cases (54.0 %) were classified as positive and 210 cases (46.0 %) were classified as negative. Integrin αvβ3 was expressed in endothelial cells in all cases (456 of 456; 100 %). Staining intensity ranged from 1 to 3 (median 2). Dichotomized by the median, 363 cases (79.6 %) were classified as positive and 93 cases (20.4 %) were classified as negative.

Integrin αvβ5

Integrin αvβ5 was expressed in 299 of 453 cases (66.0 %) in tumor cells. The percentage of stained tumor cells ranged from grade 0 to grade 4 (median grade 2), the staining intensity ranged from 0 to 3 (median 1), and the tumor cell IRS ranged from 0 to 6 (median 3). Dichotomized by the median, 246 cases (54.3 %) were classified as positive and 207 cases (45.7 %) were classified as negative. In stroma cells, αvβ5 was expressed in all cases (454 of 454; 100 %). The percentage of stained stroma cells ranged from grade 1 to grade 4 (median grade 2), the staining intensity ranged from 1 to 4 (median 2), and the stroma cell IRS ranged from 2 to 7 (median 4). Dichotomized by the median, 189 cases (41.6 %) were classified as positive and 265 cases (58.4 %) were classified as negative. The expression of αvβ5 in endothelial cells could not be analyzed in 125 of 482 cases owing to a strong stromal immunoreaction. In the remaining 357 cases, αvβ5 was expressed in endothelial cells in 274 cases (76.8 %). Staining intensity ranged from 0 to 2 (median 1). Dichotomized by the median, 274 cases (76.8 %) were classified as positive and 83 cases (23.2 %) were classified as negative.

Clinicopathological correlation

Next we studied the correlation between the expression of the integrins and the clinicopathological patient characteristics. For this purpose, we split the IRS of each marker at the median into negative (at or below the median IRS) and positive (above the median IRS) cases. Significant correlations were found for gender, tumor type, tumor localization, T category, tumor stage according to the UICC and Kiel classifications, and tumor grade. Most interestingly, diffuse-type GC exhibited a significantly reduced expression of both integrins in tumor cells and in stroma cells compared with intestinal-type GC. There was no significant correlation between N category, venous invasion, or lymph vessel invasion and the expression of either tested marker. Co
mplete data are given in Table 2.
Table 2
Correlation between αvβ3 and αvβ5 expression in tumor cells, stroma cells and endothelium and clinico-pathological patient characteristics
All patients
 
αvβ3
αvβ5
Tumor cells
Stroma cells
Endothelium
Tumor cells
Stroma cells
Endothelium
Negative [n (%)]
Positive [n (%)]
Negative [n (%)]
Positive [n (%)]
Negative [n (%)]
Positive [n (%)]
Negative [n (%)]
Positive [n (%)]
Negative [n (%)]
Positive [n (%)]
Negative [n (%)]
Positive [n (%)]
Gender
n
p
457
0.514
457
0.387
456
0.634
453
0.175
454
<0.001
357
0.701
 Men
 
204 (72.9)
76 (27.1)
124 (44.3)
156 (55.7)
55 (19.6)
225 (80.4)
120 (43.0)
159 (57.0)
142 (50.7)
138 (49.3)
52 (24.2)
163 (75.8)
 Women
134 (75.7)
43 (24.3)
86 (48.6)
91 (51.4)
38 (21.6)
138 (78.4)
87 (50.0)
87 (50.0)
123 (70.7)
51 (29.3)
31 (21.8)
111 (78.2)
Lauren phenotype
n
p
457
0.005
457
0.004
456
0.003
453
<0.001
454
<0.001
357
0.662
 Intestinal
 
155 (66.5)
78 (33.5)
88 (37.8)
145 (62.2)
33 (14.2)
199 (85.8)
83 (35.5)
151 (64.5)
99 (42.3)
135 (57.7)
42 (24.6)
129 (75.4)
 Diffuse
118 (81.9)
26 (18.1)
80 (55.6)
64 (44.4)
42 (29.2)
102 (70.8)
85 (60.7)
55 (39.3)
118 (83.7)
23 (16.3)
29 (22.1)
102 (77.9)
 Mixed
24 (85.7)
4 (14.3)
13 (46.4)
15 (53.6)
8 (28.6)
20 (71.4)
14 (50.0)
14 (50.0)
20 (71.4)
8 (28.6)
3 (13.6)
19 (86.4)
 Unclassified
41 (78.8)
11 (21.2)
29 (55.8)
23 (44.2)
10 (19.2)
42 (80.8)
25 (49.0)
26 (51.0)
28 (54.9)
23 (45.1)
9 (27.3)
24 (72.7)
Localization
n
p
457
0.732
457
0.213
456
0.319
453
0.011
454
<0.001
357
0.273
 Proximal stomach
 
105 (72.9)
39 (27.1)
60 (41.7)
84 (58.3)
25 (17.5)
118 (82.5)
52 (36.6)
90 (63.4)
66 (46.5)
76 (53.5)
20 (19.2)
84 (80.8)
 Distal stomach
233 (74.4)
80 (25.6)
150 (47.9)
163 (52.1)
68 (21.7)
245 (78.3)
155 (49.8)
156 (50.2)
199 (63.8)
113 (36.2)
63 (24.9)
190 (75.1)
pT-category
n
p
457
0.949
457
0.052
456
0.005
453
0.362
454
<0.001
357
0.495
 pT1a
 
9 (75.0)
3 (25.0)
4 (33.3)
8 (66.7)
1 (8.3)
11 (91.7)
4 (50.0)
4 (50.0)
9 (100.0)
0 (0.0)
3 (37.5)
5 (62.5)
 pT1b
28 (70.0)
12 (30.0)
10 (25.0)
30 (75.0)
2 (5.0)
38 (95.0)
15 (35.7)
27 (64.3)
27 (64.3)
15 (35.7)
11 (32.4)
23 (67.6)
 pT2
42 (76.4)
13 (23.6)
24 (43.6)
31 (56.4)
10 (18.2)
45 (81.8)
23 (44.2)
29 (55.8)
26 (50.0)
26 (50.0)
7 (18.4)
31 (81.6)
 pT3
133 (72.3)
51 (27.7)
85 (46.2)
99 (53.8)
34 (18.6)
149 (81.4)
81 (44.0)
103 (56.0)
101 (54.9)
83 (45.1)
35 (25.0)
105 (75.0)
 pT4a
97 (76.4)
30 (23.6)
66 (52.0)
61 (48.0)
31 (24.4)
96 (75.6)
61 (47.3)
68 (52.7)
71 (55.0)
58 (45.0)
21 (20.4)
82 (79.6)
 pT4b
26 (74.4)
10 (25.6)
21 (53.8)
18 (46.2)
15 (38.5)
24 (61.5)
23 (60.5)
15 (39.5)
31 (81.6)
7 (18.4)
6 (17.6)
28 (82.4)
pN-category
n
p
455
0.919
455
0.439
454
0.110
450
0.409
451
0.710
354
0.500
 pN0
 
96 (75.0)
32 (25.0)
52 (40.6)
76 (59.4)
17 (13.4)
110 (86.6)
53 (42.4)
72 (57.6)
76 (60.8)
49 (39.2)
22 (22.2)
77 (77.8)
 pN1
51 (77.3)
15 (22.7)
34 (51.5)
32 (48.5)
14 (21.2)
52 (78.8)
33 (50.8)
32 (49.2)
41 (62.1)
25 (37.9)
14 (28.0)
36 (72.0)
 pN2
57 (74.0)
20 (26.0)
35 (45.5)
42 (54.5)
19 (24.7)
58 (75.3)
40 (52.6)
36 (47.4)
42 (55.3)
34 (44.7)
10 (16.9)
49 (83.1)
 pN3 (a/b)
134 (72.8)
50 (27.2)
89 (48.4)
95 (51.6)
43 (23.4)
141 (76.6)
81 (44.0)
103 (56.0)
103 (56.0)
81 (44.0)
37 (25.3)
109 (74.7)
Stage (UICC)
n
p
449
0.773
449
0.011
448
0.037
444
0.899
445
0.751
350
0.182
 IA
 
27 (65.9)
14 (34.1)
10 (24.4)
31 (75.6)
3 (7.3)
38 (92.7)
18 (43.9)
23 (56.1)
29 (70.7)
12 (29.3)
12 (34.3)
23 (65.7)
 IB
26 (83.9)
5 (16.1)
10 (32.3)
21 (67.7)
2 (6.5)
29 (93.5)
11 (39.3)
17 (60.7)
17 (58.6)
12 (41.4)
4 (18.2)
18 (81.8)
 IIA
43 (78.2)
12 (21.8)
27 (49.1)
28 (50.9)
9 (16.7)
45 (83.3)
23 (42.6)
31 (57.4)
29 (53.7)
25 (46.3)
5 (12.8)
34 (87.2)
 IIB
33 (70.2)
14 (29.8)
25 (53.2)
22 (46.8)
9 (19.1)
38 (80.9)
24 (52.2)
22 (47.8)
26 (56.5)
20 (43.5)
10 (29.4)
24 (70.6)
 IIIA
39 (76.5)
12 (23.5)
28 (54.9)
23 (45.1)
12 (23.5)
39 (76.5)
25 (49.0)
26 (51.9)
28 (54.9)
23 (45.1)
9 (23.1)
30 (76.9)
 IIIB
59 (72.8)
22 (27.2)
32 (39.5)
49 (60.5)
18 (22.2)
63 (77.8)
36 (43.9)
46 (56.1)
45 (54.9)
37 (45.1)
18 (27.3)
48 (72.7)
 IIIC
48 (72.7)
18 (27.3)
38 (57.6)
28 (42.4)
17 (25.8)
49 (74.2)
34 (51.5)
32 (48.5)
41 (62.1)
25 (37.9)
16 (29.6)
38 (70.4)
 IV
57 (74.0)
20 (26.0)
35 (45.5)
42 (54.5)
23 (29.9)
54 (70.1)
33 (43.4)
43 (56.6)
43 (56.6)
33 (43.4)
9 (14.8)
52 (85.2)
“Kiel”-stage
n
p
456
0.689
456
0.050
455
0.013
451
0.879
452
0.512
355
0.210
 I
 
27 (65.9)
14 (34.1)
10 (24.4)
31 (75.6)
3 (7.3)
38 (92.7)
18 (43.9)
23 (56.1)
29 (70.7)
12 (29.3)
12 (34.3)
23 (65.7)
 II
64 (78.0)
18 (22.0)
38 (46.3)
44 (53.7)
10 (12.3)
71 (87.7)
33 (41.2)
47 (58.8)
44 (55.0)
36 (45.0)
9 (15.0)
51 (85.0)
 IIIA
37 (75.5)
12 (24.5)
25 (51.0)
24 (49.0)
9 (18.4)
40 (81.6)
24 (50.0)
24 (50.0)
29 (59.2)
20 (40.8)
9 (25.0)
27 (75.0)
 IIIB
106 (73.1)
39 (26.9)
67 (46.2)
78 (53.8)
33 (22.8)
112 (77.2)
67 (46.5)
77 (53.5)
81 (56.2)
63 (43.8)
30 (26.8)
82 (73.2)
 IV
104 (74.8)
35 (25.2)
70 (50.4)
69 (49.6)
38 (27.3)
101 (72.7)
65 (47.1)
73 (52.9)
80 (58.0)
58 (42.0)
23 (20.5)
89 (79.5)
Lymphatic invasion
n
p
444
0.453
444
0.392
443
0.347
439
0.701
440
0.847
346
0.703
 pL0
 
160 (75.1)
53 (24.9)
100 (46.9)
113 (53.1)
39 (18.4)
173 (81.6)
98 (46.4)
113 (53.6)
124 (58.5)
88 (41.5)
37 (22.2)
130 (77.8)
 pL1
166 (71.9)
65 (28.1)
99 (42.9)
132 (57.1)
51 (22.1)
180 (77.9)
101 (44.3)
127 (55.7)
131 (57.5)
97 (42.5)
43 (24.0)
136 (76.0)
Venous invasion
n
p
442
0.733
442
0.227
441
1.000
437
0.051
438
0.648
345
1.000
 pV0
 
290 (73.8)
103 (26.2)
181 (46.1)
212 (53.9)
80 (20.4)
312 (79.6)
181 (46.8)
206 (53.2)
224 (57.7)
164 (42.3)
71 (23.0)
238 (77.0)
 pV1
35 (71.4)
14 (28.6)
18 (36.7)
31 (63.3)
10 (20.4)
39 (79.6)
16 (32.0)
34 (68.0)
31 (62.0)
19 (38.0)
8 (22.2)
28 (77.8)
Tumor grade
n
p
445
0.041
445
0.091
445
<0.001
441
0.114
442
0.002
347
0.536
 G1/G2
 
67 (65.7)
35 (34.3)
39 (38.2)
63 (61.8)
7 (6.9)
95 (93.1)
40 (38.8)
63 (61.2)
46 (44.7)
57 (55.3)
19 (26.4)
53 (73.6)
 G3/G4
261 (76.1)
82 (23.9)
164 (47.8)
179 (52.2)
80 (23.3)
263 (76.7)
163 (48.2)
175 (51.8)
211 (62.2)
128 (37.8)
63 (22.9)
212 (77.1)
Survival
n
p
441
0.727
441
0.177
440
0.024
437
0.846
438
0.125
344
0.95
 Median ± SD
 
14.6 ± 1.1
17.5 ± 3.9
16.9 ± 2.0
13.9 ± 1.3
12.1 ± 2.5
15.9 ± 1.2
16.5 ± 1.9
13.6 ± 1.4
17.1 ± 2.0
13.4 ± 1.6
17.1 ± 3.1
14.7 ± 1.2
 [95 %CI]
[12.4–16.6]
[9.7–25.3]
[12.8–20.8]
[11.5–16.5]
[7.2–17.0]
[13.5–18.3]
[12.9–20.2]
[10.9–16.3]
[13.0–21.1]
[10.3–16.5]
[11.1–23.0]
[12.3–17.1]
p values printet in bold denote statistically significant correlations
n numbers of patients. p p value, SD standard deviation
Subgroup analyses of intestinal-type and diffuse-type GC showed that the endothelial expression of αvβ3 in intestinal-type GC correlated significantly with the tumor grading: αvβ3 was more often expressed in G1/G2 tumors than in G3/G4 tumors. Moreover, the stromal expression of αvβ5 in intestinal-type GC correlated significantly with gender, the T category, and the tumor stage according to the Kiel classification. By contrast, there was no significant correlation between the expression of either marker and the clinicopathological patient characteristics in diffuse-type GC. Complete data are shown in Online Resource 1 and Online Resource 2.
The expression of E-cadherin in tumor cells correlated significantly with the expression of αvβ3 in tumor cells (p < 0.001) and stroma cells (p = 0.006) as well as with the expression of αvβ5 in tumor cells (p = 0.017). There was no significant correlation between the expression of E-cadherin and the expression of αvβ3 in endothelial cells (p = 0.141) or the expression of αvβ5 in stroma cells (p = 1.000) or endothelial cells (p = 0.885). Complete data on E-cadherin evaluation and the staining results are given in Online Resource 3.

Prognostic significance

Patient prognosis of the entire cohort significantly depended on patient age, Laurén phenotype, T category, N category, lymphatic invasion, venous invasion, tumor grade, and UICC stage and Kiel stage (data not shown). Patients who were grouped as “positive” for expression of αvβ3 on endothelial cells had significantly longer survival compared with patients with a “negative” αvβ3 expression in endothelial cells (Table 2, Fig. 2).
The subgroup analyses of intestinal-type and diffuse-type GC showed that this also applied to patients with an intestinal-type GC: these patients had significantly longer survival if they were “positive” for expression of αvβ3 on endothelial cells, compared with patients with a “negative” αvβ3 expression. Patients with an intestinal-type GC grouped as “positive” for expression of αvβ5 on stroma cells had significantly shorter survival than patients grouped as “negative” (Online Resource 1).
There were no other significant correlations between survival data and the expression of both markers.

Explorative multivariate analysis

Explorative multivariate survival analysis was done with all parameters which had p < 0.100 in univariate survival analysis. For the entire study population and the diffuse-type subgroup, T category and N category were found to be highly significantly independent prognosticators of patient survival. The subgroup analysis of intestinal-type GC confirmed the independent prognostic significance of T category, N category, lymphatic invasion, and αvβ5 expression on stroma cells (Table 3).
Table 3
Explorative multivariate survival analysis
Subgroup
Input parameters
Independent parameters kept in model
p value
HR (95 % CI)
All cases
Laurén phenotype
   
T-category
T-category
<0.001
1.031 (1.016–1.046)
N-category
N-category
<0.001
1.041 (1.030–1.052)
Lymphatic invasion
   
Venous invasion
   
Tumor grade
   
αvβ3 expression on endothelial cells
   
Intestinal type
T-category
T-category
0.026
1.024 (1.003–1.045)
N-category
N-category
<0.001
1.029 (1.014–1.044)
Lymphatic invasion
Lymphatic invasion
0.026
1.554 (1.054–2.289)
Tumor grade
   
αvβ3 expression on endothelial cells
   
αvβ5 expression on stroma cells
αvβ5 expression on stroma cells
0.043
1.417 (1.010–1.989)
Diffuse type
T-category
T-category
<0.001
1.067 (1.035–1.100)
N-category
N-category
0.001
1.032 (1.014–1.051)
Lymphatic invasion
   
Venous invasion
   
A Cox regression was performed with all parameters as input which had p < 0.100 in univariate survival analysis.Tumor stage (Union for International Cancer Control stage and Kiel stage) was excluded from the model
HR hazard ratio
aThe 95% confidence interval is given in parentheses.

Discussion

GC is a heterogeneous disease, which still leads cancer deaths worldwide [29]. During recent years, evidence has accumulated indicating that patient prognosis and treatment response depend not only on tumor stage, but also on the expression and tumor-specific alteration of intracellular signaling pathways. Different treatment strategies are needed to specifically target the aberrant cancer signaling pathways in GC [30, 31].
Integrins αvβ3 and αvβ5 are at the focus of several oncologic investigations [3239]. Integrins drive diverse intracellular signaling cascades, and so are involved in a great variety of physiological and pathological processes. They influence tumor cell proliferation, tumor cell movement, and cell survival in vivo and in vitro, and their involvement in multiple signaling pathways is crucial for tumor progression. This all suggests that integrins may be targets for the treatment of cancer, and this has spurred integrin research in cancer biology [9, 40, 41]. Some concepts for pharmacological treatment based on the inhibition of integrins already exist [18, 19], but implementation of a therapeutic strategy demands a robust verification of integrin expression in different tumors.
Here, for the first time we have investigated the expression of αvβ3 and αvβ5 in a large cohort of GC patients. Our primary observations are that:
1.
Integrins αvβ3 and αvβ5 were expressed in at least one tumor component of all GC samples, which in general suggests that GC might be an interesting target for further studies on integrin-antagonistic cancer therapy.
 
2.
A positive αvβ3 status and a positive αvβ5 status was observed significantly more often in intestinal-type GC than in diffuse-type GC. Intestinal-type GC is known to have a better outcome than diffuse-type GC [6]. We observed that a positive αvβ3 status showed statistically significant correlations with several clinicopathological patient characteristics that are known to be associated with a better outcome, such as a minor pT category, a minor UICC/Kiel stage, and a better tumor grading (G1/G2). Indeed, a positive αvβ5 status accompanies at least some of these characteristics. If we look more closely at these p values (p ≤ 0.05), it becomes clear that the distribution of the different subgroups is not as divergent as the statistics indicate. The subgroup analyses of intestinal-type and diffuse-type GC showed that only the endothelial expression of αvβ3 correlated significantly with the tumor grading, and that only the stromal expression of αvβ5 correlated significantly with the gender, the T category, and the tumor stage according to the Kiel classification. This indicates that the observed correlation between a positive αvβ3 status and a positive αvβ5 status and clinicopathological parameters that are associated with a better outcome is mainly caused by the increased expression of αvβ3 and αvβ5 in intestinal-type GC compared with diffuse-type GC. On the basis of these observations, one may speculate that both markers may be suitable to aid histological classification of GC.
 
3.
Patients with an increased expression of αvβ3 in endothelial cells, and patients with an intestinal-type GC “negative” for αvβ5 had significantly longer survival. Moreover, αvβ5 expression on stroma cells of intestinal-type GC was confirmed to be an independent prognostic factor. This interesting result is notable, as it seems that at least αvβ5 has potential value as a prognostic biomarker for GC. Nevertheless, the significance and the clinicopathological relevance of these findings remain unclear and need to be addressed in further investigations.
 
Another interesting finding was the predominant expression of αvβ3 and αvβ5 in stromal and endothelial cells. There is evidence that intratumoral stroma is a predictor of survival in patients with GC [42]. Moreover, the proven correlation between the expression of both markers with E-cadherin confirms the well-known involvement of integrins in cell adhesion signaling [43, 44].
In other tumor entities, a high expression level of other αv integrins has been described to be associated with tumor progression and worse survival, which is partly contradictory to our results. Previous studies mainly compared the expression level in neoplastic versus nonneoplastic tissue. In endometrial cancer, cervical squamous cell carcinoma, and serous epithelial ovarian carcinoma, an upregulation of integrin αvβ6 was described in tumor tissue compared with normal cycling endometrium or nonneoplastic epithelia [4547]. In colorectal cancer, the overexpression of αv correlated significantly with poor prognosis [48]. In our study, we did not compare expression levels in nonneoplastic versus neoplastic tissue, but focused on the differential expression of αvβ3 and αvβ5 in the diverse cellular components of the neoplastic tissue compartment. Moreover, we used two other antibodies, with potentially different reactivity profiles in GC, than those that were used previously.
However, our study shows that the tumor-biological significance of integrins is not restricted to their expression by tumor cells. It extends into the intratumoral stroma and tumor vessels, and furthermore, may also depend by as yet unknown mechanisms on the histological phenotype. The differential expression of integrins in the tumor stroma of different GC tumor types somewhat supports the general observation that the tumor stroma is highly variable; for example, with or without pronounced desmoplasia. This is a particular hallmark of diffuse-type GC. We hypothesize that the diffuse type, with its poorly cohesive growth pattern, might be the result of decreased integrin expression of both tumor and stroma cells. Further studies of this topic may be productive.
One methodical issue in our study was that the pretreatment procedure for both antibodies was relatively intense. Both antibodies have previously been shown to deliver concordant staining results in frozen sections and FFPE tissue. Regarding FFPE tissue, even small deviations of the pretreatment temperature led to a decreased staining intensity and quality during manual staining of anti-αvβ3 and anti-αvβ5 [49]. Such hazards can be minimized by using fully automated staining systems, as done in the present study, and as designed for these antibodies [20]. Nevertheless, possible incomplete antigen retrieval or partial destruction of epitopes during the rather aggressive pretreatment has to be generally considered.
In conclusion, this study is the first extensive longitudinal investigation of the expression of integrins αvβ3 and αvβ5 in GC. Our data support recent whole genome sequencing data and suggest that GC is an interesting indication for further investigations of selective integrin antagonists, and that both αvβ3 and αvβ5 are selectively expressed in different GC classes, and might be valuable in classification of GC subtypes. Furthermore, it is clear that in GC at least αvβ5 has potential value as a prognostic biomarker, and that both αvβ3 and αvβ5 might even be considered as novel therapeutic targets. Further investigations are needed, which, also in consideration of the comparison of integrin expression in tumor and nontumor tissue, might lead to additional information regarding the potential value of integrins αvβ3 and αvβ5 as diagnostic and prognostic biomarkers.

Acknowledgment

We thank Ann-Kristin Linning for her excellent technical assistance. CR is supported by grants of the German Research Council (Grant-No. Ro 1173/12).

Conflict of interest

Simon L. Goodman is employed by Merck KGaA. All other authors declare that they have no conflict of interest.

Author contributions

Christine Böger conceived and performed experiments and analyzed data, Christoph Röcken conceived experiments, and Hans-Michael Behrens analyzed data. All authors were involved in writing the paper and had final approval regarding the submitted manuscript.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Alberts SR, Cervantes A, van de Velde CJH. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14:31–6. Alberts SR, Cervantes A, van de Velde CJH. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14:31–6.
2.
Zurück zum Zitat Cunningham D, Allum WH, Stenning SP, Thompson JN, van de Velde CJH, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.CrossRefPubMed Cunningham D, Allum WH, Stenning SP, Thompson JN, van de Velde CJH, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.CrossRefPubMed
3.
Zurück zum Zitat Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, Pignon JP, et al. Benefit of adjuvant chemotherapy for resectable gastric cancer a meta-analysis. JAMA. 2010;303:1729–37.CrossRefPubMed Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, Pignon JP, et al. Benefit of adjuvant chemotherapy for resectable gastric cancer a meta-analysis. JAMA. 2010;303:1729–37.CrossRefPubMed
4.
Zurück zum Zitat Lauren P. 2 histological main types of gastric carcinoma—diffuse and so-called intestinal-type carcinoma—an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMed Lauren P. 2 histological main types of gastric carcinoma—diffuse and so-called intestinal-type carcinoma—an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMed
5.
Zurück zum Zitat Kuang RG, Wu HX, Hao GX, Wang JW, Zhou CJ. Expression and significance of IGF-2, PCNA, MMP-7, and α-actin in gastric carcinoma with Lauren classification. Turk J Gastroenterol. 2013;24:99–108.PubMed Kuang RG, Wu HX, Hao GX, Wang JW, Zhou CJ. Expression and significance of IGF-2, PCNA, MMP-7, and α-actin in gastric carcinoma with Lauren classification. Turk J Gastroenterol. 2013;24:99–108.PubMed
6.
Zurück zum Zitat Warneke VS, Behrens HM, Haag J, Balschun K, Boger C, Becker T, et al. Prognostic and putative predictive biomarkers of gastric cancer for personalized medicine. Diagn Mol Pathol. 2013;22:127–37.CrossRefPubMed Warneke VS, Behrens HM, Haag J, Balschun K, Boger C, Becker T, et al. Prognostic and putative predictive biomarkers of gastric cancer for personalized medicine. Diagn Mol Pathol. 2013;22:127–37.CrossRefPubMed
7.
Zurück zum Zitat Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer. Best Pract Res Clin Gastroenterol. 2006;20:651–74.CrossRefPubMed Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer. Best Pract Res Clin Gastroenterol. 2006;20:651–74.CrossRefPubMed
9.
Zurück zum Zitat Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992;89:2018–22.PubMedCentralCrossRefPubMed Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992;89:2018–22.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Fornaro M, Manes T, Languino LR. Integrins and prostate cancer metastases. Cancer Metastasis Rev. 2001;20:321–31.CrossRefPubMed Fornaro M, Manes T, Languino LR. Integrins and prostate cancer metastases. Cancer Metastasis Rev. 2001;20:321–31.CrossRefPubMed
11.
Zurück zum Zitat Chi F, Fu D, Zhang X, Lv Z, Wang Z. Expression of the c-Met proto-oncogene and integrin α5β1 in human gastric cardia adenocarcinoma. Biosci Biotechnol Biochem. 2012;76:1471–6.CrossRefPubMed Chi F, Fu D, Zhang X, Lv Z, Wang Z. Expression of the c-Met proto-oncogene and integrin α5β1 in human gastric cardia adenocarcinoma. Biosci Biotechnol Biochem. 2012;76:1471–6.CrossRefPubMed
12.
Zurück zum Zitat Kawashima A, Tsugawa S, Boku A, Kobayashi M, Minamoto T, Nakanishi I, et al. Expression of αv integrin family in gastric carcinomas: increased αvβ6 is associated with lymph node metastasis. Pathol Res Pract. 2003;199:57–64.CrossRefPubMed Kawashima A, Tsugawa S, Boku A, Kobayashi M, Minamoto T, Nakanishi I, et al. Expression of αv integrin family in gastric carcinomas: increased αvβ6 is associated with lymph node metastasis. Pathol Res Pract. 2003;199:57–64.CrossRefPubMed
13.
Zurück zum Zitat Zhuang Z, Zhou R, Xu X, Tian T, Liu Y, Liu Y, et al. Clinical significance of integrin αvβ6 expression effects on gastric carcinoma invasiveness and progression via cancer-associated fibroblasts. Med Oncol. 2013;30:580.CrossRefPubMed Zhuang Z, Zhou R, Xu X, Tian T, Liu Y, Liu Y, et al. Clinical significance of integrin αvβ6 expression effects on gastric carcinoma invasiveness and progression via cancer-associated fibroblasts. Med Oncol. 2013;30:580.CrossRefPubMed
14.
Zurück zum Zitat Zhang ZY, Xu KS, Wang JS, Yang GY, Wang W, Wang JY, et al. Integrin αvβ6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol. 2008;20:61–6.CrossRef Zhang ZY, Xu KS, Wang JS, Yang GY, Wang W, Wang JY, et al. Integrin αvβ6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol. 2008;20:61–6.CrossRef
15.
Zurück zum Zitat Ren J, Xu S, Guo D, Zhang J, Liu S. Increased expression of α5β1-integrin is a prognostic marker for patients with gastric cancer. Clin Transl Oncol. 2014;16:668–74.CrossRefPubMed Ren J, Xu S, Guo D, Zhang J, Liu S. Increased expression of α5β1-integrin is a prognostic marker for patients with gastric cancer. Clin Transl Oncol. 2014;16:668–74.CrossRefPubMed
16.
Zurück zum Zitat Chamberlain MC, Cloughsey T, Reardon DA, Wen PY. A novel treatment for glioblastoma: integrin inhibition. Expert Rev Neurother. 2012;12:421–35.CrossRefPubMed Chamberlain MC, Cloughsey T, Reardon DA, Wen PY. A novel treatment for glioblastoma: integrin inhibition. Expert Rev Neurother. 2012;12:421–35.CrossRefPubMed
17.
Zurück zum Zitat Tabatabai G, Weller M, Nabors B, Picard M, Reardon D, Mikkelsen T, et al. Targeting integrins in malignant glioma. Target Oncol. 2010;5:175–81.CrossRefPubMed Tabatabai G, Weller M, Nabors B, Picard M, Reardon D, Mikkelsen T, et al. Targeting integrins in malignant glioma. Target Oncol. 2010;5:175–81.CrossRefPubMed
18.
Zurück zum Zitat Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9:804–20.CrossRefPubMed Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9:804–20.CrossRefPubMed
19.
Zurück zum Zitat Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci. 2012;33:405–12.CrossRefPubMed Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci. 2012;33:405–12.CrossRefPubMed
20.
Zurück zum Zitat Goodman S, Grote HJ, Wilm C. Matched rabbit monoclonal antibodies against αv-series integrins reveal a novel αvβ3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open. 2012;1:329–40.PubMedCentralCrossRefPubMed Goodman S, Grote HJ, Wilm C. Matched rabbit monoclonal antibodies against αv-series integrins reveal a novel αvβ3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open. 2012;1:329–40.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Kawahara E, Ooi A, Nakanishi I. Integrin distribution in gastric carcinoma: association of beta 3 and beta 5 integrins with tumor invasiveness. Pathol Int. 1995;45:493–500.CrossRefPubMed Kawahara E, Ooi A, Nakanishi I. Integrin distribution in gastric carcinoma: association of beta 3 and beta 5 integrins with tumor invasiveness. Pathol Int. 1995;45:493–500.CrossRefPubMed
22.
Zurück zum Zitat Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.CrossRefPubMed Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.CrossRefPubMed
23.
Zurück zum Zitat The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014. doi:10.1038/nature13480. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014. doi:10.​1038/​nature13480.
24.
Zurück zum Zitat Wittekind C, Oberschmid B. TNM classification of malignant tumors 2010. Pathologe. 2010;31:333–8.CrossRefPubMed Wittekind C, Oberschmid B. TNM classification of malignant tumors 2010. Pathologe. 2010;31:333–8.CrossRefPubMed
25.
Zurück zum Zitat Warneke VS, Behrens HM, Hartmann JT, Held H, Becker T, Schwarz NT, et al. Cohort study based on the seventh edition of the TNM classification for gastric cancer: proposal of a new staging system. J Clin Oncol. 2011;29:2364–71.CrossRefPubMed Warneke VS, Behrens HM, Hartmann JT, Held H, Becker T, Schwarz NT, et al. Cohort study based on the seventh edition of the TNM classification for gastric cancer: proposal of a new staging system. J Clin Oncol. 2011;29:2364–71.CrossRefPubMed
26.
27.
28.
Zurück zum Zitat Benjamini Y. Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol. 2010;72:405–16.CrossRef Benjamini Y. Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol. 2010;72:405–16.CrossRef
29.
Zurück zum Zitat Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed
30.
Zurück zum Zitat Lordick F, Schulze T. Molecular prognostic factors and new systemic therapies in gastric cancer. Onkologe. 2008;14:389–95.CrossRef Lordick F, Schulze T. Molecular prognostic factors and new systemic therapies in gastric cancer. Onkologe. 2008;14:389–95.CrossRef
31.
Zurück zum Zitat Smyth EC, Cunningham D. Targeted therapy for gastric cancer. Curr Treat Options Oncol. 2012;13:377–89.CrossRefPubMed Smyth EC, Cunningham D. Targeted therapy for gastric cancer. Curr Treat Options Oncol. 2012;13:377–89.CrossRefPubMed
32.
Zurück zum Zitat Oliveira-Ferrer L, Hauschild J, Fiedler W, Bokemeyer C, Nippgen J, Celik I, et al. Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res. 2008;27:86.PubMedCentralCrossRefPubMed Oliveira-Ferrer L, Hauschild J, Fiedler W, Bokemeyer C, Nippgen J, Celik I, et al. Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res. 2008;27:86.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B. Integrin αvβ3 antagonist cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys. 2006;65:1536–43.CrossRefPubMed Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B. Integrin αvβ3 antagonist cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys. 2006;65:1536–43.CrossRefPubMed
34.
Zurück zum Zitat Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of αvβ3 integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 2002;62:4263–72.PubMed Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of αvβ3 integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 2002;62:4263–72.PubMed
35.
Zurück zum Zitat Reardon DA, Nabors LB, Stupp R, Mikkelsen T. Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs. 2008;17:1225–35.PubMedCentralCrossRefPubMed Reardon DA, Nabors LB, Stupp R, Mikkelsen T. Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs. 2008;17:1225–35.PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Loges S, Butzal M, Otten J, Schweizer M, Fischer U, Bokemeyer C, et al. Cilengitide inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Biochem Biophys Res Commun. 2007;357:1016–20.CrossRefPubMed Loges S, Butzal M, Otten J, Schweizer M, Fischer U, Bokemeyer C, et al. Cilengitide inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Biochem Biophys Res Commun. 2007;357:1016–20.CrossRefPubMed
37.
Zurück zum Zitat Carter A. Integrins as target: first phase III trial launches, but questions remain. J Natl Cancer Inst. 2010;102:675–7.CrossRefPubMed Carter A. Integrins as target: first phase III trial launches, but questions remain. J Natl Cancer Inst. 2010;102:675–7.CrossRefPubMed
38.
Zurück zum Zitat Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O’Neill A, Plotkin S, et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol. 2008;26:5610–7.CrossRefPubMed Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O’Neill A, Plotkin S, et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol. 2008;26:5610–7.CrossRefPubMed
39.
Zurück zum Zitat Manegold C, Vansteenkiste J, Cardenal F, Schutte W, Woll P, Ulsperger E, et al. Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small cell lung cancer. Invest New Drugs. 2013;31:175–82.PubMedCentralCrossRefPubMed Manegold C, Vansteenkiste J, Cardenal F, Schutte W, Woll P, Ulsperger E, et al. Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small cell lung cancer. Invest New Drugs. 2013;31:175–82.PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Sipos B, Kalthoff H, Klöppel G, Goodman SL. Expression of functional forms avb3, avb5, laminin-5, vitronectin and EGF-R in human tumors: consequences for cilengitide targeting. Cancer Res Suppl. 2010;70:2031.CrossRef Sipos B, Kalthoff H, Klöppel G, Goodman SL. Expression of functional forms avb3, avb5, laminin-5, vitronectin and EGF-R in human tumors: consequences for cilengitide targeting. Cancer Res Suppl. 2010;70:2031.CrossRef
41.
Zurück zum Zitat Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157–64.CrossRefPubMed Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157–64.CrossRefPubMed
42.
Zurück zum Zitat Wu YH, Grabsch H, Ivanova T, Tan IB, Murray J, Ooi CH, et al. Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut. 2013;62:1100–11.CrossRefPubMed Wu YH, Grabsch H, Ivanova T, Tan IB, Murray J, Ooi CH, et al. Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut. 2013;62:1100–11.CrossRefPubMed
43.
Zurück zum Zitat Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013;126:393–401.CrossRefPubMed Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013;126:393–401.CrossRefPubMed
44.
Zurück zum Zitat Huveneers S, Danen EH. Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci. 2009;122:1059–69.CrossRefPubMed Huveneers S, Danen EH. Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci. 2009;122:1059–69.CrossRefPubMed
45.
Zurück zum Zitat Hecht JL, Dolinski BM, Gardner HA, Violette SM, Weinreb PH. Overexpression of the αvβ6 integrin in endometrial cancer. Appl Immunohistochem Mol Morphol. 2008;16:543–7.CrossRefPubMed Hecht JL, Dolinski BM, Gardner HA, Violette SM, Weinreb PH. Overexpression of the αvβ6 integrin in endometrial cancer. Appl Immunohistochem Mol Morphol. 2008;16:543–7.CrossRefPubMed
46.
Zurück zum Zitat Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, et al. Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol. 2007;212:316–24.CrossRefPubMed Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, et al. Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol. 2007;212:316–24.CrossRefPubMed
47.
Zurück zum Zitat Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS. αvβ6 integrin-a marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem. 2002;50:1371–9.CrossRefPubMed Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS. αvβ6 integrin-a marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem. 2002;50:1371–9.CrossRefPubMed
49.
Zurück zum Zitat Boger C, Kalthoff H, Goodman SL, Rocken C. Validation and comparison of anti-αvβ3 and anti-αvβ5 rabbit monoclonal versus murine monoclonal antibodies in four different tumor entities. Appl Immunohistochem Mol Morphol. 2013;21:553–60.CrossRefPubMed Boger C, Kalthoff H, Goodman SL, Rocken C. Validation and comparison of anti-αvβ3 and anti-αvβ5 rabbit monoclonal versus murine monoclonal antibodies in four different tumor entities. Appl Immunohistochem Mol Morphol. 2013;21:553–60.CrossRefPubMed
Metadaten
Titel
Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer
verfasst von
Christine Böger
Viktoria S. Warneke
Hans-Michael Behrens
Holger Kalthoff
Simon L. Goodman
Thomas Becker
Christoph Röcken
Publikationsdatum
01.10.2015
Verlag
Springer Japan
Erschienen in
Gastric Cancer / Ausgabe 4/2015
Print ISSN: 1436-3291
Elektronische ISSN: 1436-3305
DOI
https://doi.org/10.1007/s10120-014-0435-2

Weitere Artikel der Ausgabe 4/2015

Gastric Cancer 4/2015 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.