Skip to main content

Advertisement

Log in

Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0–12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Tejado M, Naranjo-Suarez S, Jiménez C, Carrera AC, Landázuri MO, del Peso L (2001) Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis. J Biol Chem 276(25):22368–22374

    PubMed  CAS  Google Scholar 

  • Ballanyi K (2004) Protective role of neuronal KATP channels in brain hypoxia. J Exp Biol 207(Pt 18):3201–3212

    PubMed  CAS  Google Scholar 

  • Barhwal K, Hota SK, Prasad D, Singh SB, Ilavazhagan G (2008) Hypoxia-induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: neuroprotection by acetyl-L-carnitine. J Neurosci Res 86(12):2705–2721

    PubMed  CAS  Google Scholar 

  • Barhwal K, Hota SK, Jain V, Prasad D, Singh SB, Ilavazhagan G (2009) Acetyl-l-carnitine (ALCAR) prevents hypobaric hypoxia-induced spatial memory impairment through extracellular related kinase-mediated nuclear factor erythroid 2-related factor 2 phosphorylation. Neuroscience 161(2):501–514

    PubMed  CAS  Google Scholar 

  • Baze MM, Schlauch K, Hayes JP (2010) Gene expression of the liver in response to chronic hypoxia. Physiol Genomics 41:275–288

    CAS  Google Scholar 

  • Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR (2002a) Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 277:39728–39738

    PubMed  CAS  Google Scholar 

  • Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P (2002b) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22:393–403

    PubMed  CAS  Google Scholar 

  • Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AMG, Butterfield DA (2005) Oxidative stress, mitochondrial dysfunction and cellular stressresponse in Friedreich’s ataxia. J Neurol Sci 233(1–2):145–162

    PubMed  CAS  Google Scholar 

  • Carmel JB, Kakinohana O, Mestril R, Young W, Marsala M, Hart RP (2004) Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cord. Exp Neurol 185(1):81–96

    PubMed  CAS  Google Scholar 

  • Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    PubMed  CAS  Google Scholar 

  • Chao CC, Ma YM, Lee EH (2007) Protein kinase CK2 impairs spatial memory formation through differential cross talk with PI-3 kinase signaling: activation of Akt and inactivation of SGK1. J Neurosci 27:6243–6248

    PubMed  CAS  Google Scholar 

  • Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, Johnson JA (2009a) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci USA 106(8):2933–2938

    PubMed  CAS  Google Scholar 

  • Chen Y, Nadi NS, Chavko M, Auker CR, McCarron RM (2009b) Microarray analysis of gene expression in rat cortical neurons exposed to hyperbaric air and oxygen. Neurochem Res 34:1047–1056

    PubMed  CAS  Google Scholar 

  • Denk A, Wirth T, Baumann B (2000) NF-κB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev 11:303–320

    PubMed  CAS  Google Scholar 

  • Dhodda VK, Sailor KA, Bowen KK, Vemuganti R (2004) Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 89(1):73–89

    PubMed  CAS  Google Scholar 

  • Dietrich WD, Busto R, Bethea JR (1999) Postischemic hypothermia and IL-10 treatment provide long-lasting neuroprotection of CA1 hippocampus following transient global ischemia in rats. Exp Neurol 158(2):444–450

    PubMed  CAS  Google Scholar 

  • Dolt KS, Karar J, Mishra MK, Salim J, Kumar R, Grover SK, Pasha MAQ (2007) Transcriptional downregulation of sterol metabolism genes in murine liver exposed to acute hypobaric hypoxia. Biochem Biophys Res Commun 354:148–153

    PubMed  CAS  Google Scholar 

  • Douglas RM, Ryu J, Kanaan A, Rivero MC, Dugan LL, Haddad GG, Ali SS (2010) Neuronal death during combined intermittent hypoxia/hypercapnia is due to mitochondrial dysfunction. Am J Physiol Cell Physiol 298(6):C1594–C1602

    PubMed  CAS  Google Scholar 

  • Espada S, Ortega F, Molina-Jijón E, Rojo AI, Pérez-Sen R, Pedraza-Chaverri J, Miras-Portugal MT, Cuadrado A (2010) The purinergic P2Y(13) receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic Biol Med 49(3):416–426

    PubMed  CAS  Google Scholar 

  • Fahlman CS, Bickler PE, Sullivan B, Gregory GA (2002) Activation of the neuroprotective ERK signaling pathway by fructose-1, 6-bisphosphate during hypoxia involves intracellular Ca2+ and phospholipase C. Brain Res 958(1):43–51

    PubMed  CAS  Google Scholar 

  • Fan CH, Iacobas DA, Zhou D, Chen QF, Lai JK, Gavrialov O, Haddad GG (2005) Gene expression and phenotypic characterization of mouse heart after chronic constant or intermittent hypoxia. Physiol Genomics 22:292–307

    PubMed  CAS  Google Scholar 

  • Fang H, Zhang LF, Meng FT, Du X, Zhou JN (2010) Acute hypoxia promote the phosphorylation of tau via ERK pathway. Neurosci Lett 474(3):173–177

    PubMed  CAS  Google Scholar 

  • Fernandez AP, Serrano J, Tessarollo L, Cuttitta F, Martínez A (2008) Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions. Proc Natl Acad Sci 34:12581–12586

    Google Scholar 

  • Ganfornina MD, Perez-Garcia MT, Gutierrez G, Miguel-Velado E, Lopez-Lopez JR, Marin A, Sanchez D, Gonzalez C (2005) Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. J Physiol 566:491–503

    PubMed  CAS  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448

    PubMed  CAS  Google Scholar 

  • Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE (2010) Hyperbaric oxygen treatment induces antioxidant gene expression. Ann NY Acad Sci 1197:178–183

    PubMed  CAS  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–54354

    PubMed  CAS  Google Scholar 

  • Gu ZL, Jiang Q, Zhang GY (2001) Extracellular signalregulated kinase 1/2 activation in hippocampus after cerebral ischemia may not interfere with post-ischemic cell death. Brain Res 901:79–84

    PubMed  CAS  Google Scholar 

  • Gustavsson M, Mallard C, Vannucci SJ, Wilson MA, Johnston MV, Hagberg H (2007) Vascular response to hypoxia preconditioning in the immature brain. J Cereb Blood Flow Metab 27(5):928–938

    PubMed  CAS  Google Scholar 

  • Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142

    PubMed  CAS  Google Scholar 

  • Guzmán-Beltrán S, Espada S, Orozco-Ibarra M, Pedraza-Chaverri J, Cuadrado A (2008) Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress. Neurosci Lett 447(2–3):167–171

    PubMed  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001

    PubMed  CAS  Google Scholar 

  • Han F, Takeda K, Ono M, Date F, Ishikawa K, Yokoyama S, Shinozawa Y, Furuyama K, Shibahara S (2010) Hypoxemia induces expression of heme oxygenase-1 and heme oxygenase-2 proteins in the mouse myocardium. J Biochem 147(1):143–151

    PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    PubMed  CAS  Google Scholar 

  • Hedtjarn M, Mallard C, Eklind S, Gustafson-Brywe K, Hagberg H (2004) Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24(12):1317–1332

    PubMed  Google Scholar 

  • Hochachka PW, Lutz PL (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B Biochem Mol Biol 130(4):435–459

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci 93:9493–9498

    PubMed  CAS  Google Scholar 

  • Hota SK, Barhwal K, Singh SB, Ilavazgahan G (2007) Differential temporal response of hippocampus, cortex and cerebellum to hypobaric hypoxia: a biochemical approach. Neurochem Int 51(6–7):384–390

    PubMed  CAS  Google Scholar 

  • Hwang YP, Jeong HG (2008) The coffee diterpene kahweol induces heme oxygenase-1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic neurons from 6-hydroxydopamine-derived oxidative stress. FEBS Lett 582(17):2655–2662

    PubMed  CAS  Google Scholar 

  • Iacobas DA, Fan C, Iacobas S, Haddad GG (2008) Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival. Funct Integr Genomics 8:265–275

    PubMed  CAS  Google Scholar 

  • Innamorato NG, Rojo AI, AI Garcıa-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689

    PubMed  CAS  Google Scholar 

  • Irving EA, Hadingham SJ, Roberts J, Gibbons M, Chabot-Fletcher M, Roshak A, Parsons AA (2000) Decreased nuclear factor-κB DNA binding activity following permanent focal cerebral ischaemia in the rat. Neurosci Lett 288:45–48

    PubMed  CAS  Google Scholar 

  • Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207

    PubMed  CAS  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144C:192–201

    Google Scholar 

  • Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, van Leyen K (2008) Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39(9):2538–2543

    PubMed  CAS  Google Scholar 

  • Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann NY Acad Sci 1147:61–69

    PubMed  CAS  Google Scholar 

  • Kanaan A, Farahani R, Douglas RM, LaManna JC, Haddad GG (2006) Effect of chronic continuous or intermittent hypoxia and reoxygenation on cerebral capillary density and myelination. Am J Physiol Regul Integr Comp Physiol 290:R1105–R1114

    PubMed  CAS  Google Scholar 

  • Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-κB by the Akt/PKB kinase. Curr Biol 9:601–604

    PubMed  CAS  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    PubMed  CAS  Google Scholar 

  • Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM (2005) Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J 19(14):2026–2038

    PubMed  CAS  Google Scholar 

  • Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM (2006) The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J 20:1185–1187

    PubMed  CAS  Google Scholar 

  • Kraft AD, Lee JM, Johnson DA, Kan YW, Johnson JA (2006) Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J Neurochem 98(6):1852–1865

    PubMed  CAS  Google Scholar 

  • Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM (1997) Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272:5375–5381

    PubMed  CAS  Google Scholar 

  • Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O’Farrelly C, Rabb H, Taylor CT (2006) Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 20(14):2624–2626

    PubMed  CAS  Google Scholar 

  • Li F, Omori N, Jin G, Wang SJ, Sato K, Nagano I, Shoji M, Abe K (2003) Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res 962:21–26

    PubMed  CAS  Google Scholar 

  • Li HY, Zhong YF, Wu SY, Shi N (2007) NF-E2 related factor 2 activation and heme oxygenase-1 induction by tert-butylhydroquinone protect against deltamethrin-mediated oxidative stress in PC12 cells. Chem Res Toxicol 20:1242–1251

    PubMed  CAS  Google Scholar 

  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21(4):521–531

    PubMed  Google Scholar 

  • Lopez-Barneo J, Pardal R, Ortega-Saenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Physiol 63:259–287

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, del Toro R, Levitsky KL, Chiara MD, Ortega-Saenz P (2004) Regulation of oxygen sensing by ion channels. J Appl Physiol 96(3):1187–1195

    PubMed  CAS  Google Scholar 

  • Lutz PL, Nilsson GE (1997) Contrasting strategies for anoxic brain survival-glycolysis up or down. J Exp Biol 200:411–419

    PubMed  CAS  Google Scholar 

  • Ma YL, Tsai MC, Hsu WL, Lee EH (2006) SGK protein kinase facilitates the expression of long-term potentiation in hippocampal neurons. Learn Mem 13:114–118

    PubMed  CAS  Google Scholar 

  • Maiti P, Singh SB, Sharma AK, Muthuraju S, Illavazhagan G, Banerjee PK (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int 49:709–716

    PubMed  CAS  Google Scholar 

  • Marti HH, Risau W (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci 95:15809–15814

    PubMed  CAS  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    PubMed  CAS  Google Scholar 

  • Mense SM, Sengupta A, Zhou M, Lan C, Bentsman G, Volsky DJ, Zhang L (2006) Gene expression profiling reveals the profound upregulation of hypoxia-responsive genes in primary human astrocytes. Physiol Genomics 25(3):435–449

    PubMed  CAS  Google Scholar 

  • Milton SL, Dirk LJ, Kara LF, Prentice HM (2008) Adenosine modulates ERK1/2, PI3K/Akt, and p38MAPK activation in the brain of the anoxia-tolerant turtle Trachemys scripta. J Cereb Blood Flow Metab 28:1469–1477

    PubMed  CAS  Google Scholar 

  • Moller P, Loft S, Lundby C, Olsen NV (2001) Acute hypoxia and hypoxia exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J 15:1181–1186

    PubMed  CAS  Google Scholar 

  • Nguyen T, Nioi P, Pickett BC (2009) The NRF-2-antioxidant response element signaling pathway and its activation by oxidative Stress. J Biol Chem 284:13291–13295

    PubMed  CAS  Google Scholar 

  • Pettersen EO, Juul NO, Ronning OW (1986) Regulation of protein metabolism of human cells during and after acute hypoxia. Cancer Res 46:4346–4351

    PubMed  CAS  Google Scholar 

  • Polotosky VY, Savransky V, Bevans-Fonti S, Reinke C, Li J, Grigoryev DN, Shimoda LA (2010) Intermittent and sustained hypoxia induce a similar gene expression profile in human aortic endothelial cells. Physiol Genomics 41:306–314

    Google Scholar 

  • Richter DW, Schmidt-Garcon P, Pierrefiche O, Bischoff AM, Lalley PM (1999) Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats. J Physiol 514(2):567–578

    PubMed  CAS  Google Scholar 

  • Rupert JL (2008) Genomics and environmental hypoxia: what (and how) we can learn from the transcriptome. High Alt Med Biol 9(2):115–122

    PubMed  CAS  Google Scholar 

  • Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    PubMed  CAS  Google Scholar 

  • Satoh T, Okamoto SI, Cui J, Watanabe Y, Furuta K, Suzuki M, Tohyama K, Lipton SA (2006) Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc Natl Acad Sci USA 103(3):768–773

    PubMed  CAS  Google Scholar 

  • Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-κB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559

    PubMed  CAS  Google Scholar 

  • Serrano J, Uttenthal LO, Martínez A, Fernández AP, Martínez de Velasco J, Alonso D, Bentura ML, Santacana M, Gallardo JR, Martínez-Murillo R, Cuttitta F, Rodrigo J (2000) Distribution of adrenomedullin-like immunoreactivity in the rat central nervous system by light and electron microscopy. Brain Res 853:245–268

    PubMed  CAS  Google Scholar 

  • Serrano J, Fernandez AP, Sanchez J, Rodrigo J, Martinez A (2008) Adrenomedullin expression is up-regulated by acute hypobaric hypoxia in the cerebral cortex of the adult rat. Brain Pathol 18:434–442

    PubMed  CAS  Google Scholar 

  • Seta KA, Millhorn DE (2004) Functional genomics approach to hypoxia signaling. J Appl Physiol 96:765–773

    PubMed  CAS  Google Scholar 

  • Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Doré S (2007) Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience 147(1):53–59

    PubMed  CAS  Google Scholar 

  • Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in brain. Nat Rev Neurosci 5(6):437–448

    PubMed  CAS  Google Scholar 

  • Shih AY, Li P, Murphy TH (2005a) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    PubMed  CAS  Google Scholar 

  • Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH (2005b) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280(24):22925–22936

    PubMed  CAS  Google Scholar 

  • Shioda N, Han F, Fukunaga K (2009) Role of Akt and ERK signaling in the neurogenesis following brain ischemia. Int Rev Neurobiol 85:375–387

    PubMed  CAS  Google Scholar 

  • Silvestre JS, Mallat Z, Tamarat R, Duriez M, Tedgui A, Levy BI (2001) Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10: role in ischemia-induced angiogenesis. Circ Res 89(3):259–264

    PubMed  CAS  Google Scholar 

  • Song YS, Narasimhan P, Kim GS, Jung JE, Park E, Chan PH (2008) The role of Akt signaling in oxidative stress mediates NF-κB activation in mild transient focal cerebral ischemia. J Cereb Blood Flow Metab 28:1917–1926

    PubMed  CAS  Google Scholar 

  • Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL, Tobar E, Shaw TE, Chu X, Simon RP (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362(9389):1028–1037

    PubMed  CAS  Google Scholar 

  • Tada Y, Laudi S, Harral J, Carr M, Ivester C, Tanabe N, Takiguchi Y, Tatsumi K, Kuriyama T, Nichols WC, West J (2008) Murine pulmonary response to chronic hypoxia is strain specific. Exp Lung Res 34(6):313–323

    PubMed  CAS  Google Scholar 

  • Tamm M, Bihl M, Eickelberg O, Stulz P, Perruchoud AP, Roth M (1998) Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol 19:653–661

    PubMed  CAS  Google Scholar 

  • Tsai KJ, Chen SK, Ma YL, Hsu WL, Lee EH (2002) SGK, a primary glucocorticoid induced gene, facilitates memory consolidation of spatial learning in rats. Proc Natl Acad Sci 99:3990–3995

    PubMed  CAS  Google Scholar 

  • Vargas MR, Pehar M, Cassina P, Martínez-Palma L, Thompson JA, Beckman JS, Barbeito L (2005) Fibroblast growth factor-1 induces heme oxygenase-1 via nuclear factor erythroid 2-related factor 2 (Nrf2) in spinal cord astrocytes: consequences for motor neuron survival. J Biol Chem 280(27):25571–25579

    PubMed  CAS  Google Scholar 

  • Vartiainen N, Goldsteins G, Keksa-Goldsteine V, Chan PH, Koistinaho J (2003) Aspirin inhibits p44/42 mitogenactivated protein kinase and is protective against hypoxia/reoxygenation neuronal damage. Stroke 34:752–757

    PubMed  Google Scholar 

  • Von Hertzen LS, Giese K (2006) Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J Neurosci 25:1935–1942

    Google Scholar 

  • Wang X, McCullough KD, Franke TF, Holbrook NJ (2000) Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275:14624–14631

    PubMed  CAS  Google Scholar 

  • Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Doré S (2007) Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 43(3):408–414

    PubMed  Google Scholar 

  • Wang X, Mao X, Xie L, Greenberg DA, Jin K (2009) Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab 29:1644–1654

    PubMed  Google Scholar 

  • Wilson MH, Newman S, Imray CH (2009) The cerebral effects of ascent to high altitudes. Lancet Neurol 8:175–191

    PubMed  CAS  Google Scholar 

  • Wu DC, Ye W, Che XM, Yang GY (2000) Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab 20:1320–1330

    PubMed  CAS  Google Scholar 

  • Wu W, Dave NB, Yu G, Strollo PJ, Kovkarova-Naumovski E, Ryter SW, Reeves SR, Dayyat E, Wang Y, Choi AM, Gozal D, Kaminski N (2008) Network analysis of temporal effects of intermittent and sustained hypoxia on rat lungs. Physiol Genomics 36(1):24–34

    PubMed  Google Scholar 

  • Yan SF, Tritto I, Pinsky D, Laio H, Huang J, Fuller G, Brett J, May L, Stern D (1995) Induction of interleukin 6 (IL-6) by hypoxia in vascular cells central role of the binding site for nuclear factor-IL-6. J Biol Chem 270:11463–11471

    PubMed  CAS  Google Scholar 

  • Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141

    PubMed  CAS  Google Scholar 

  • Yepes M, Roussel BD, Ali C, Vivien D (2009) Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 32(1):48–55

    PubMed  CAS  Google Scholar 

  • Yin W, Signore AP, Iwai M, Cao G, Gao Y, Johnnides MJ, Hickey RW, Chen J (2007) Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 38(3):1017–1024

    PubMed  CAS  Google Scholar 

  • Zhang K, Lindsberg PJ, Tatlisumak T, Kaste M, Olsen HS, Andersson LC (2000) Stanniocalcin: A molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci USA 97:3637–3642

    PubMed  CAS  Google Scholar 

  • Zhang L, Zhang ZG, Liu XS, Hozeska-Solgot A, Chopp M (2007) The PI3K/Akt pathway mediates the neuroprotective effect of atorvastatin in extending thrombolytic therapy after embolic stroke in the rat. Arterioscler Thromb Vasc Biol 27:2470–2475

    PubMed  CAS  Google Scholar 

  • Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38(12):3280–3286

    PubMed  CAS  Google Scholar 

  • Zhou D, Wang J, Zapala MA, Xue J, Schork NJ, Haddad GG (2008) Gene expression in mouse brain following chronic hypoxia: role of sarcospan in glial cell death. Physiol Genomics 32(3):370–379

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Defence Institute of Physiology and Allied Sciences Grant TC/297/TASK-122(NKS)/DIPAS/2007. MS is a recipient of Defence Research and Development Organisation (DRDO) Senior Research Fellowship (SRF). The technical support provided by Dr. Dhananjay Shukla is greatly appreciated. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niroj Kumar Sethy or Kalpana Bhargava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 442 kb)

ESM 2

(XLS 116 kb)

ESM 3

(XLS 77 kb)

ESM 4

(PPT 16 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sethy, N.K., Singh, M., Kumar, R. et al. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia. Funct Integr Genomics 11, 119–137 (2011). https://doi.org/10.1007/s10142-010-0195-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0195-y

Keywords

Navigation