Skip to main content

Advertisement

Log in

Rates and predictors of seizure freedom in resective epilepsy surgery: an update

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Epilepsy is a debilitating neurological disorder affecting approximately 1 % of the world’s population. Drug-resistant focal epilepsies are potentially surgically remediable. Although epilepsy surgery is dramatically underutilized among medically refractory patients, there is an expanding collection of evidence supporting its efficacy which may soon compel a paradigm shift. Of note is that a recent randomized controlled trial demonstrated that early resection leads to considerably better seizure outcomes than continued medical therapy in patients with pharmacoresistant temporal lobe epilepsy. In the present review, we provide a timely update of seizure freedom rates and predictors in resective epilepsy surgery, organized by the distinct pathological entities most commonly observed. Class I evidence, meta-analyses, and individual observational case series are considered, including the experiences of both our institution and others. Overall, resective epilepsy surgery leads to seizure freedom in approximately two thirds of patients with intractable temporal lobe epilepsy and about one half of individuals with focal neocortical epilepsy, although only the former observation is supported by class I evidence. Two common modifiable predictors of postoperative seizure freedom are early operative intervention and, in the case of a discrete lesion, gross total resection. Evidence-based practice guidelines recommend that epilepsy patients who continue to have seizures after trialing two or more medication regimens should be referred to a comprehensive epilepsy center for multidisciplinary evaluation, including surgical consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou-Khalil B (2007) An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer noninvasive alternatives. Epilepsia 48(3):442–455. doi:10.1111/j.1528-1167.2007.01012.x

    PubMed  Google Scholar 

  2. Althausen A, Gleissner U, Hoppe C, Sassen R, Buddewig S, von Lehe M, Schramm J, Elger CE, Helmstaedter C (2012) Long-term outcome of hemispheric surgery at different ages in 61 epilepsy patients. J Neurol Neurosurg Psychiatry 84:529–536. doi:10.1136/jnnp-2012-303811

    Google Scholar 

  3. Aronica E, Becker AJ, Spreafico R (2012) Malformations of cortical development. Brain Pathol 22(3):380–401. doi:10.1111/j.1750-3639.2012.00581.x

    PubMed  Google Scholar 

  4. Aronica E, Leenstra S, van Veelen CW, van Rijen PC, Hulsebos TJ, Tersmette AC, Yankaya B, Troost D (2001) Glioneuronal tumors and medically intractable epilepsy: a clinical study with long-term follow-up of seizure outcome after surgery. Epilepsy Res 43(3):179–191

    CAS  PubMed  Google Scholar 

  5. Awad I, Jabbour P (2006) Cerebral cavernous malformations and epilepsy. Neurosurg Focus 21(1):e7

    PubMed  Google Scholar 

  6. Barkovich AJ, Chuang SH (1990) Unilateral megalencephaly: correlation of MR imaging and pathologic characteristics. AJNR Am J Neuroradiol 11(3):523–531

    CAS  PubMed  Google Scholar 

  7. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development: update 2001. Neurology 57(12):2168–2178

    CAS  PubMed  Google Scholar 

  8. Baumann CR, Schuknecht B, Lo Russo G, Cossu M, Citterio A, Andermann F, Siegel AM (2006) Seizure outcome after resection of cavernous malformations is better when surrounding hemosiderin-stained brain also is removed. Epilepsia 47(3):563–566. doi:10.1111/j.1528-1167.2006.00468.x

    PubMed  Google Scholar 

  9. Begley CE, Beghi E, Beran RG, Heaney D, Langfitt JT, Pachlatko C, Silfvenius H, Sperling MR, Wiebe S (2002) ILAE Commission on the Burden of Epilepsy, Subcommission on the Economic Burden of Epilepsy: final report 1998–2001. Epilepsia 43(6):668–673

    PubMed  Google Scholar 

  10. Bekelis K, Missios S, Desai A, Eskey C, Erkmen K (2012) Magnetic resonance imaging/magnetic resonance angiography fusion technique for intraoperative navigation during microsurgical resection of cerebral arteriovenous malformations. Neurosurg Focus 32(5):E7. doi:10.3171/2012.1.FOCUS127

    PubMed  Google Scholar 

  11. Berger MS (1996) Minimalism through intraoperative functional mapping. Clin Neurosurg 43:324–337

    CAS  PubMed  Google Scholar 

  12. Berger MS, Ghatan S, Haglund MM, Dobbins J, Ojemann GA (1993) Low-grade gliomas associated with intractable epilepsy: seizure outcome utilizing electrocorticography during tumor resection. J Neurosurg 79(1):62–69. doi:10.3171/jns.1993.79.1.0062

    CAS  PubMed  Google Scholar 

  13. Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG (2007) Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 107(3):488–494. doi:10.3171/JNS-07/09/0488

    PubMed  Google Scholar 

  14. Bilginer B, Yalnizoglu D, Soylemezoglu F, Turanli G, Cila A, Topcu M, Akalan N (2009) Surgery for epilepsy in children with dysembryoplastic neuroepithelial tumor: clinical spectrum, seizure outcome, neuroradiology, and pathology. Child’s Nerv Syst ChNS : Off J Int Soc Pediatric Neurosurg 25(4):485–491. doi:10.1007/s00381-008-0762-x

    Google Scholar 

  15. Bills D, Rosenfeld JV, Phelan EM, Klug GL (1996) Intracranial arteriovenous malformations in childhood: presentation, management and outcome. J Clin Neurosci: Off J Neurosurg Soc Australas 3(3):220–228

    Google Scholar 

  16. Binder JR (2011) Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav: E&B 20(2):214–222. doi:10.1016/j.yebeh.2010.08.004

    Google Scholar 

  17. Bingaman WE (2004) Surgery for focal cortical dysplasia. Neurology 62(6 Suppl 3):S30–34

    PubMed  Google Scholar 

  18. Blumcke I (2009) Neuropathology of focal epilepsies: a critical review. Epilepsy Behav: E&B 15(1):34–39. doi:10.1016/j.yebeh.2009.02.033

    Google Scholar 

  19. Blumcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G, Barkovich AJ, Battaglia G, Becker A, Cepeda C, Cendes F, Colombo N, Crino P, Cross JH, Delalande O, Dubeau F, Duncan J, Guerrini R, Kahane P, Mathern G, Najm I, Ozkara C, Raybaud C, Represa A, Roper SN, Salamon N, Schulze-Bonhage A, Tassi L, Vezzani A, Spreafico R (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc ask force of the ILAE Diagnostic Methods Commission. Epilepsia 52(1):158–174. doi:10.1111/j.1528-1167.2010.02777.x

    PubMed Central  PubMed  Google Scholar 

  20. Bordey A, Sontheimer H (1998) Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res 32(1–2):286–303

    CAS  PubMed  Google Scholar 

  21. Bourneville D (1880) Sclerose tubereuse des circonvolutions cerebrales: idiotie et epilepsie hemiplegique. Arch Neurol 1:81–91

    Google Scholar 

  22. Buckingham MJ, Crone KR, Ball WS, Berger TS (1989) Management of cerebral cavernous angiomas in children presenting with seizures. Childs Nerv Syst: ChNS : Off J Int Soc Pediatr Neurosurg 5(6):347–349

    CAS  Google Scholar 

  23. Buckner JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30(6 Suppl 19):10–14

    PubMed  Google Scholar 

  24. Bujarski KA, Hirashima F, Roberts DW, Jobst BC, Gilbert KL, Roth RM, Flashman LA, McDonald BC, Saykin AJ, Scott RC, Dinnerstein E, Preston J, Williamson PD, Thadani VM (2013) Long-term seizure, cognitive, and psychiatric outcome following trans-middle temporal gyrus amygdalohippocampectomy and standard temporal lobectomy. J Neurosurg 119(1):16–23. doi:10.3171/2013.3.JNS12714

    PubMed  Google Scholar 

  25. Carlson C, Teutonico F, Elliott RE, Moshel YA, LaJoie J, Miles D, Devinsky O, Weiner HL (2011) Bilateral invasive electroencephalography in patients with tuberous sclerosis complex: a path to surgery? J Neurosurg Pediatr 7(4):421–430. doi:10.3171/2011.1.PEDS10348

    PubMed  Google Scholar 

  26. Chaichana KL, Parker SL, Olivi A, Quinones-Hinojosa A (2009) Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. J Neurosurg 111(2):282–292. doi:10.3171/2009.2.JNS081132

    PubMed  Google Scholar 

  27. Chang EF, Christie C, Sullivan JE, Garcia PA, Tihan T, Gupta N, Berger MS, Barbaro NM (2010) Seizure control outcomes after resection of dysembryoplastic neuroepithelial tumor in 50 patients. J Neurosurg Pediatr 5(1):123–130. doi:10.3171/2009.8.PEDS09368

    PubMed  Google Scholar 

  28. Chang EF, Clark A, Jensen RL, Bernstein M, Guha A, Carrabba G, Mukhopadhyay D, Kim W, Liau LM, Chang SM, Smith JS, Berger MS, McDermott MW (2009) Multiinstitutional validation of the University of California at San Francisco Low-Grade Glioma Prognostic Scoring System. J Neurosurg 111(2):203–210. doi:10.3171/2009.2.JNS081101

    PubMed  Google Scholar 

  29. Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, Parsa AT, McDermott MW, Berger MS (2011) Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article. J Neurosurg 114(3):566–573. doi:10.3171/2010.6.JNS091246

    PubMed  Google Scholar 

  30. Chang EF, Gabriel RA, Potts MB, Garcia PA, Barbaro NM, Lawton MT (2009) Seizure characteristics and control after microsurgical resection of supratentorial cerebral cavernous malformations. Neurosurgery 65(1):31–37. doi:10.1227/01, discussion 37–38

    PubMed  Google Scholar 

  31. Chang EF, Nagarajan SS, Mantle M, Barbaro NM, Kirsch HE (2009) Magnetic source imaging for the surgical evaluation of electroencephalography-confirmed secondary bilateral synchrony in intractable epilepsy. J Neurosurg 111(6):1248–1256. doi:10.3171/2009.6.JNS081376

    PubMed Central  PubMed  Google Scholar 

  32. Chang EF, Potts MB, Keles GE, Lamborn KR, Chang SM, Barbaro NM, Berger MS (2008) Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 108(2):227–235. doi:10.3171/JNS/2008/108/2/0227

    PubMed  Google Scholar 

  33. Chang EF, Wang DD, Barkovich AJ, Tihan T, Auguste KI, Sullivan JE, Garcia PA, Barbaro NM (2011) Predictors of seizure freedom after surgery for malformations of cortical development. Ann Neurol 70(1):151–162. doi:10.1002/ana.22399

    PubMed  Google Scholar 

  34. Choi H, Sell RL, Lenert L, Muennig P, Goodman RR, Gilliam FG, Wong JB (2008) Epilepsy surgery for pharmacoresistant temporal lobe epilepsy: a decision analysis. JAMA: J Am Med Assoc 300(21):2497–2505. doi:10.1001/jama.2008.771

    CAS  Google Scholar 

  35. Clusmann H, Kral T, Gleissner U, Sassen R, Urbach H, Blumcke I, Bogucki J, Schramm J (2004) Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery 54(4):847–859, discussion 859–860

    PubMed  Google Scholar 

  36. Cohen-Gadol AA, Ozduman K, Bronen RA, Kim JH, Spencer DD (2004) Long-term outcome after epilepsy surgery for focal cortical dysplasia. J Neurosurg 101(1):55–65. doi:10.3171/jns.2004.101.1.0055

    PubMed  Google Scholar 

  37. Cook SW, Nguyen ST, Hu B, Yudovin S, Shields WD, Vinters HV, Van de Wiele BM, Harrison RE, Mathern GW (2004) Cerebral hemispherectomy in pediatric patients with epilepsy: comparison of three techniques by pathological substrate in 115 patients. J Neurosurg 100(2 Suppl Pediatrics):125–141. doi:10.3171/ped.2004.100.2.0125

    PubMed  Google Scholar 

  38. Couillard-Despres S, Winkler J, Uyanik G, Aigner L (2001) Molecular mechanisms of neuronal migration disorders, quo vadis? Curr Mol Med 1(6):677–688

    CAS  PubMed  Google Scholar 

  39. Crawford PM, West CR, Shaw MD, Chadwick DW (1986) Cerebral arteriovenous malformations and epilepsy: factors in the development of epilepsy. Epilepsia 27(3):270–275

    CAS  PubMed  Google Scholar 

  40. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355(13):1345–1356. doi:10.1056/NEJMra055323

    CAS  PubMed  Google Scholar 

  41. Cross JH, Jayakar P, Nordli D, Delalande O, Duchowny M, Wieser HG, Guerrini R, Mathern GW, International League against Epilepsy, Subcommission for Pediatric Epilepsy Surgery, Commissions of Neurosurgery and Paediatrics (2006) Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 47(6):952–959. doi:10.1111/j.1528-1167.2006.00569.x

    PubMed  Google Scholar 

  42. Curran WJ Jr, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, Chang CH, Rotman M, Asbell SO, Krisch RE et al (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85(9):704–710

    PubMed  Google Scholar 

  43. Cusmai R, Chiron C, Curatolo P, Dulac O, Tran-Dinh S (1990) Topographic comparative study of magnetic resonance imaging and electroencephalography in 34 children with tuberous sclerosis. Epilepsia 31(6):747–755

    CAS  PubMed  Google Scholar 

  44. Cyberonics I (2012) Cyberonics announces 100,000th patient implant of VNS therapy®. Accessed December 20, 2012

  45. Dandy W (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia. JAMA: J Am Med Assoc 90:823–825

    Google Scholar 

  46. de Lanerolle NC, Lee TS, Spencer DD (2012) Histopathology of human epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. Bethesda, MD

  47. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123. doi:10.1056/NEJM200101113440207

    CAS  PubMed  Google Scholar 

  48. DeFazio RA, Hablitz JJ (2000) Alterations in NMDA receptors in a rat model of cortical dysplasia. J Neurophysiol 83(1):315–321

    CAS  PubMed  Google Scholar 

  49. Devinsky O (2004) Diagnosis and treatment of temporal lobe epilepsy. Rev Neurol Dis 1(1):2–9

    PubMed  Google Scholar 

  50. Di Rocco C, Battaglia D, Pietrini D, Piastra M, Massimi L (2006) Hemimegalencephaly: clinical implications and surgical treatment. Child’s Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg 22(8):852–866. doi:10.1007/s00381-006-0149-9

    Google Scholar 

  51. Di Rocco C, Iannelli A (2000) Hemimegalencephaly and intractable epilepsy: complications of hemispherectomy and their correlations with the surgical technique. A report on 15 cases. Pediatr Neurosurg 33(4):198–207

    PubMed  Google Scholar 

  52. Dimou S, Battisti RA, Hermens DF, Lagopoulos J (2013) A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 36(2):205–214. doi:10.1007/s10143-012-0436-8

    CAS  PubMed  Google Scholar 

  53. Duffau H (2009) Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Curr Opin Oncol 21(6):543–549. doi:10.1097/CCO.0b013e3283305996

    PubMed  Google Scholar 

  54. Eisenschenk S, Gilmore RL, Friedman WA, Henchey RA (1998) The effect of LINAC stereotactic radiosurgery on epilepsy associated with arteriovenous malformations. Stereotact Funct Neurosurg 71(2):51–61

    CAS  PubMed  Google Scholar 

  55. Elliott I, Kadis DS, Lach L, Olds J, McCleary L, Whiting S, Snyder T, Smith ML (2012) Quality of life in young adults who underwent resective surgery for epilepsy in childhood. Epilepsia 53(9):1577–1586. doi:10.1111/j.1528-1167.2012.03594.x

    PubMed  Google Scholar 

  56. Ellis MJ, Kulkarni AV, Drake JM, Rutka JT, Armstrong D, Dirks PB (2010) Intraoperative angiography during microsurgical removal of arteriovenous malformations in children. J Neurosurg Pediatr 6(5):435–443. doi:10.3171/2010.8.PEDS10134

    PubMed  Google Scholar 

  57. Engel J Jr (1987) Outcome with respect to epileptic seizures. In: Engel J Jr (ed) Surgical treatment of the epilepsies. Raven, New York, pp 553–571

    Google Scholar 

  58. Engel J Jr (1996) Surgery for seizures. N Engl J Med 334(10):647–652. doi:10.1056/NEJM199603073341008

    PubMed  Google Scholar 

  59. Engel J Jr (2001) Finally, a randomized, controlled trial of epilepsy surgery. N Engl J Med 345(5):365–367. doi:10.1056/NEJM200108023450510

    PubMed  Google Scholar 

  60. Engel J Jr (2008) Surgical treatment for epilepsy: too little, too late? JAMA: J Am Med Assoc 300(21):2548–2550. doi:10.1001/jama.2008.756

    CAS  Google Scholar 

  61. Engel J Jr, McDermott MP, Wiebe S, Langfitt JT, Stern JM, Dewar S, Sperling MR, Gardiner I, Erba G, Fried I, Jacobs M, Vinters HV, Mintzer S, Kieburtz K (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA: J Am Med Assoc 307(9):922–930. doi:10.1001/jama.2012.220

    CAS  Google Scholar 

  62. Engel J Jr, Wiebe S (2012) Who is a surgical candidate? Handb Clin Neurol 108:821–828. doi:10.1016/B978-0-444-52899-5.00030-7

    PubMed  Google Scholar 

  63. Engel J Jr, Wiebe S, French J, Sperling M, Williamson P, Spencer D, Gumnit R, Zahn C, Westbrook E, Enos B (2003) Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 60(4):538–547

    PubMed  Google Scholar 

  64. Engel J, Van Ness P, Rasmussen T, Ojemann L (1993) Outcome with respect to epileptic seizures. In: Engel J (ed) Surgical treatment of the epilepsies, 2nd edn. Raven, New York, pp 609–621

    Google Scholar 

  65. Engel J, Williamson PD (2007) Limbic seizures. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook. Lippincott Williams & Wilkins, Philadelphia, pp 541–552

    Google Scholar 

  66. Englot DJ, Berger MS, Barbaro NM, Chang EF (2011) Predictors of seizure freedom after resection of supratentorial low-grade gliomas. A review. J Neurosurg 115(2):240–244. doi:10.3171/2011.3.JNS1153

    PubMed  Google Scholar 

  67. Englot DJ, Berger MS, Chang EF, Garcia PA (2012) Characteristics and treatment of seizures in patients with high-grade glioma: a review. Neurosurg Clin N Am 23(2):227–235. doi:10.1016/j.nec.2012.01.009

    PubMed  Google Scholar 

  68. Englot DJ, Blumenfeld H (2009) Consciousness and epilepsy: why are complex-partial seizures complex? Prog Brain Res 177:147–170. doi:10.1016/S0079-6123(09)17711-7

    PubMed Central  PubMed  Google Scholar 

  69. Englot DJ, Breshears JD, Sun PP, Chang EF, Auguste KI (2013) Seizure outcomes after resective surgery for extra-temporal lobe epilepsy in pediatric patients. J Neurosurg Pediatr 12(2):126–133. doi:10.3171/2013.5.PEDS1336

    PubMed  Google Scholar 

  70. Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF (2012) Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery 70(4):921–928. doi:10.1227/NEU.0b013e31823c3a30, discussion 928

    PubMed  Google Scholar 

  71. Englot DJ, Han SJ, Lawton MT, Chang EF (2011) Predictors of seizure freedom in the surgical treatment of supratentorial cavernous malformations. J Neurosurg 115(6):1169–1174. doi:10.3171/2011.7.JNS11536

    PubMed  Google Scholar 

  72. Englot DJ, Lee AT, Tsai C, Halabi C, Barbaro NM, Auguste KI, Garcia PA, Chang EF (2013) Seizure types and frequency in patients who “fail” temporal lobectomy for intractable epilepsy. Neurosurgery 73(5):838–844. doi:10.1227/NEU.0000000000000120

    PubMed  Google Scholar 

  73. Englot DJ, Ouyang D, Garcia PA, Barbaro NM, Chang EF (2012) Epilepsy surgery trends in the United States, 1990–2008. Neurology 78(16):1200–1206. doi:10.1212/WNL.0b013e318250d7ea

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Englot DJ, Ouyang D, Wang DD, Rolston JD, Garcia PA, Chang EF (2013) Relationship between hospital surgical volume, lobectomy rates, and adverse perioperative events at US epilepsy centers. J Neurosurg 118(1):169–174. doi:10.3171/2012.9.JNS12776

    PubMed  Google Scholar 

  75. Englot DJ, Rolston JD, Wang DD, Sun PP, Chang EF, Auguste KI (2013) Seizure outcomes after temporal lobectomy in pediatric patients. J Neurosurg Pediatr 12(2):134–141. doi:10.3171/2013.5.PEDS12526

    PubMed  Google Scholar 

  76. Englot DJ, Rutkowski MJ, Ivan ME, Sun PP, Kuperman RA, Chang EF, Gupta N, Sullivan JE, Auguste KI (2013) Effects of temporal lobectomy on consciousness-impairing and consciousness-sparing seizures in children. Childs Nerv Syst ChNS: Off J Int Soc Pediatr Neurosurg 29(10):1915–1922. doi:10.1007/s00381-013-2168-7

    Google Scholar 

  77. Englot DJ, Wang DD, Rolston JD, Shih TT, Chang EF (2012) Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis. J Neurosurg 116(5):1042–1048. doi:10.3171/2012.1.JNS111620

    PubMed  Google Scholar 

  78. Englot DJ, Yang L, Hamid H, Danielson N, Bai X, Marfeo A, Yu L, Gordon A, Purcaro MJ, Motelow JE, Agarwal R, Ellens DJ, Golomb JD, Shamy MC, Zhang H, Carlson C, Doyle W, Devinsky O, Vives K, Spencer DD, Spencer SS, Schevon C, Zaveri HP, Blumenfeld H (2010) Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain J Neurol 133(Pt 12):3764–3777. doi:10.1093/brain/awq316

    Google Scholar 

  79. Englot DJ, Young WL, Han SJ, McCulloch CE, Chang EF, Lawton MT (2012) Seizure predictors and control after microsurgical resection of supratentorial arteriovenous malformations in 440 patients. Neurosurgery 71(3):572–580. doi:10.1227/NEU.0b013e31825ea3ba

    PubMed  Google Scholar 

  80. Evans LT, Morse R, Roberts DW (2012) Epilepsy surgery in tuberous sclerosis: a review. Neurosurg Focus 32(3):E5. doi:10.3171/2012.1.FOCUS11330

    PubMed  Google Scholar 

  81. Fallah A, Guyatt GH, Snead OC 3rd, Ebrahim S, Ibrahim GM, Mansouri A, Reddy D, Walter SD, Kulkarni AV, Bhandari M, Banfield L, Bhatnagar N, Liang S, Teutonico F, Liao J, Rutka JT (2013) Predictors of seizure outcomes in children with tuberous sclerosis complex and intractable epilepsy undergoing resective epilepsy surgery: an individual participant data meta-analysis. PloS One 8(2):e53565. doi:10.1371/journal.pone.0053565

    PubMed Central  PubMed  Google Scholar 

  82. FDA (2013) Device approvals and clearances. Accessed March 30, 2013

  83. Ferrer I, Oliver B, Russi A, Casas R, Rivera R (1994) Parvalbumin and calbindin-D28k immunocytochemistry in human neocortical epileptic foci. J Neurolog Sci 123(1–2):18–25

    CAS  Google Scholar 

  84. Fish DR, Spencer SS (1995) Clinical correlations: MRI and EEG. Magn Reson Imaging 13(8):1113–1117

    CAS  PubMed  Google Scholar 

  85. Flores-Sarnat L (2002) Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 17(5):373–384, discussion 384

    PubMed  Google Scholar 

  86. Fountas KN, Smith JR, Robinson JS, Tamburrini G, Pietrini D, Di Rocco C (2006) Anatomical hemispherectomy. Childs Nerv Syst ChNS: Off J Int Soc Pediatr Neurosurg 22(8):982–991. doi:10.1007/s00381-006-0135-2

    CAS  Google Scholar 

  87. French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, Spencer DD (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34(6):774–780. doi:10.1002/ana.410340604

    CAS  PubMed  Google Scholar 

  88. Fried I, Kim JH, Spencer DD (1994) Limbic and neocortical gliomas associated with intractable seizures: a distinct clinicopathological group. Neurosurgery 34(5):815–823, discussion 823–814

    CAS  PubMed  Google Scholar 

  89. Fullerton HJ, Achrol AS, Johnston SC, McCulloch CE, Higashida RT, Lawton MT, Sidney S, Young WL (2005) Long-term hemorrhage risk in children versus adults with brain arteriovenous malformations. Stroke 36(10):2099–2104. doi:10.1161/01.STR.0000181746.77149.2b

    PubMed  Google Scholar 

  90. Gerszten PC, Adelson PD, Kondziolka D, Flickinger JC, Lunsford LD (1996) Seizure outcome in children treated for arteriovenous malformations using gamma knife radiosurgery. Pediatr Neurosurg 24(3):139–144

    CAS  PubMed  Google Scholar 

  91. Gil-Nagel A, Abou-Khalil B (2012) Electroencephalography and video-electroencephalography. Handb Clin Neurol 107:323–345. doi:10.1016/B978-0-444-52898-8.00020-3 (edited by PJ Vinken and GW Bruyn)

    PubMed  Google Scholar 

  92. Giulioni M, Galassi E, Zucchelli M, Volpi L (2005) Seizure outcome of lesionectomy in glioneuronal tumors associated with epilepsy in children. J Neurosurg 102(3 Suppl):288–293. doi:10.3171/ped.2005.102.3.0288

    PubMed  Google Scholar 

  93. Giulioni M, Gardella E, Rubboli G, Roncaroli F, Zucchelli M, Bernardi B, Tassinari CA, Calbucci F (2006) Lesionectomy in epileptogenic gangliogliomas: seizure outcome and surgical results. J Clin Neurosci: Off J Neurosurg Soc Australas 13(5):529–535. doi:10.1016/j.jocn.2005.07.017

    Google Scholar 

  94. Giulioni M, Rubboli G, Marucci G, Martinoni M, Volpi L, Michelucci R, Marliani AF, Bisulli F, Tinuper P, Castana L, Sartori I, Calbucci F (2009) Seizure outcome of epilepsy surgery in focal epilepsies associated with temporomesial glioneuronal tumors: lesionectomy compared with tailored resection. J Neurosurg 111(6):1275–1282. doi:10.3171/2009.3.JNS081350

    PubMed  Google Scholar 

  95. Glantz MJ, Cole BF, Forsyth PA, Recht LD, Wen PY, Chamberlain MC, Grossman SA, Cairncross JG (2000) Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54(10):1886–1893

    CAS  PubMed  Google Scholar 

  96. Goldstein LH, Polkey CE (1992) Behavioural memory after temporal lobectomy or amygdalo-hippocampectomy. Br J Clin Psychol/Br Psychol Soc 31(Pt 1):75–81

    Google Scholar 

  97. Goncalves-Ferreira A, Campos AR, Herculano-Carvalho M, Pimentel J, Bentes C, Peralta AR, Morgado C (2013) Amygdalohippocampotomy: surgical technique and clinical results. J Neurosurg 118(5):1107–1113. doi:10.3171/2013.1.JNS12727

    Google Scholar 

  98. Gonzalez-Martinez JA, Gupta A, Kotagal P, Lachhwani D, Wyllie E, Luders HO, Bingaman WE (2005) Hemispherectomy for catastrophic epilepsy in infants. Epilepsia 46(9):1518–1525. doi:10.1111/j.1528-1167.2005.53704.x

    PubMed  Google Scholar 

  99. Goodman M, Lamm SH, Engel A, Shepherd CW, Houser OW, Gomez MR (1997) Cortical tuber count: a biomarker indicating neurologic severity of tuberous sclerosis complex. J Child Neurol 12(2):85–90

    CAS  PubMed  Google Scholar 

  100. Haglund MM, Berger MS, Kunkel DD, Franck JE, Ghatan S, Ojemann GA (1992) Changes in gamma-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas. J Neurosurg 77(2):209–216. doi:10.3171/jns.1992.77.2.0209

    CAS  PubMed  Google Scholar 

  101. Hammen T, Romstock J, Dorfler A, Kerling F, Buchfelder M, Stefan H (2007) Prediction of postoperative outcome with special respect to removal of hemosiderin fringe: a study in patients with cavernous haemangiomas associated with symptomatic epilepsy. Seizure: J Br Epilepsy Assoc 16(3):248–253. doi:10.1016/j.seizure.2007.01.001

    CAS  Google Scholar 

  102. Haneef Z, Stern J, Dewar S, Engel J Jr (2010) Referral pattern for epilepsy surgery after evidence-based recommendations: a retrospective study. Neurology 75(8):699–704. doi:10.1212/WNL.0b013e3181eee457

    PubMed Central  PubMed  Google Scholar 

  103. Hauptman JS, Mathern GW (2012) Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia 53(Suppl 4):98–104. doi:10.1111/j.1528-1167.2012.03619.x

    PubMed  Google Scholar 

  104. Heikkinen ER, Konnov B, Melnikov L, Yalynych N, Zubkov Yu N, Garmashov Yu A, Pak VA (1989) Relief of epilepsy by radiosurgery of cerebral arteriovenous malformations. Stereotact Funct Neurosurg 53(3):157–166

    CAS  PubMed  Google Scholar 

  105. Helmstaedter C, Kockelmann E (2006) Cognitive outcomes in patients with chronic temporal lobe epilepsy. Epilepsia 47(Suppl 2):96–98. doi:10.1111/j.1528-1167.2006.00702.x

    PubMed  Google Scholar 

  106. Herman ST (2002) Epilepsy after brain insult: targeting epileptogenesis. Neurology 59(9 Suppl 5):S21–26

    PubMed  Google Scholar 

  107. Heros RC, Korosue K, Diebold PM (1990) Surgical excision of cerebral arteriovenous malformations: late results. Neurosurgery 26(4):570–577, discussion 577–578

    CAS  PubMed  Google Scholar 

  108. Hilbig A, Babb TL, Najm I, Ying Z, Wyllie E, Bingaman W (1999) Focal cortical dysplasia in children. Dev Neurosci 21(3–5):271–280

    CAS  PubMed  Google Scholar 

  109. Hogan RE, Kaiboriboon K (2003) The “dreamy state”: John Hughlings-Jackson’s ideas of epilepsy and consciousness. Am J Psychiatry 160(10):1740–1747

    PubMed  Google Scholar 

  110. Hoh BL, Chapman PH, Loeffler JS, Carter BS, Ogilvy CS (2002) Results of multimodality treatment for 141 patients with brain arteriovenous malformations and seizures: factors associated with seizure incidence and seizure outcomes. Neurosurgery 51(2):303–309, discussion 309–311

    PubMed  Google Scholar 

  111. Hughlings-Jackson J, Stewart J (1899) Epileptic attacks with a warning of a crude sensation of smell and with the intellectual aura (dreamy state) in a patient who had symptoms pointing to gross organic disease of the right temporo-sphenoidal lobe. Brain J Neurol 22:534–543

    Google Scholar 

  112. Jackson GD, Badawy RA (2011) Selecting patients for epilepsy surgery: identifying a structural lesion. Epilepsy Behav: E&B 20(2):182–189. doi:10.1016/j.yebeh.2010.09.019

    Google Scholar 

  113. Jansen FE, Huiskamp G, van Huffelen AC, Bourez-Swart M, Boere E, Gebbink T, Vincken KL, van Nieuwenhuizen O (2006) Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia 47(1):108–114. doi:10.1111/j.1528-1167.2006.00373.x

    PubMed  Google Scholar 

  114. Jansen FE, van Huffelen AC, Algra A, van Nieuwenhuizen O (2007) Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia 48(8):1477–1484. doi:10.1111/j.1528-1167.2007.01117.x

    PubMed  Google Scholar 

  115. Janszky J, Ebner A, Kruse B, Mertens M, Jokeit H, Seitz RJ, Witte OW, Tuxhorn I, Woermann FG (2003) Functional organization of the brain with malformations of cortical development. Ann Neurol 53(6):759–767. doi:10.1002/ana.10545

    PubMed  Google Scholar 

  116. Jonas R, Nguyen S, Hu B, Asarnow RF, LoPresti C, Curtiss S, de Bode S, Yudovin S, Shields WD, Vinters HV, Mathern GW (2004) Cerebral hemispherectomy: hospital course, seizure, developmental, language, and motor outcomes. Neurology 62(10):1712–1721

    CAS  PubMed  Google Scholar 

  117. Jooma R, Yeh HS, Privitera MD, Gartner M (1995) Lesionectomy versus electrophysiologically guided resection for temporal lobe tumors manifesting with complex partial seizures. J Neurosurg 83(2):231–236. doi:10.3171/jns.1995.83.2.0231

    CAS  PubMed  Google Scholar 

  118. Josephson CB, Leach JP, Duncan R, Roberts RC, Counsell CE, Al-Shahi Salman R, Scottish Audit of Intracranial Vascular Malformations (SAIVMs) Steering Committee and Collaborators (2011) Seizure risk from cavernous or arteriovenous malformations: prospective population-based study. Neurology 76(18):1548–1554. doi:10.1212/WNL.0b013e3182190f37

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Kim JH, Guimaraes PO, Shen MY, Masukawa LM, Spencer DD (1990) Hippocampal neuronal density in temporal lobe epilepsy with and without gliomas. Acta Neuropathol 80(1):41–45

    CAS  PubMed  Google Scholar 

  120. Kingwell K (2012) Epilepsy: surgical therapy should not be considered a last resort for pharmacoresistant epilepsy. Nat Rev Neurol 8(5):238. doi:10.1038/nrneurol.2012.55

    PubMed  Google Scholar 

  121. Klein M, Engelberts NH, van der Ploeg HM, Kasteleijn-Nolst Trenite DG, Aaronson NK, Taphoorn MJ, Baaijen H, Vandertop WP, Muller M, Postma TJ, Heimans JJ (2003) Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol 54(4):514–520. doi:10.1002/ana.10712

    PubMed  Google Scholar 

  122. Kobayashi K, Ohtsuka Y, Ohno S, Ohmori I, Ogino T, Yoshinaga H, Tanaka A, Hiraki Y, Oka E (2001) Clinical spectrum of epileptic spasms associated with cortical malformation. Neuropediatrics 32(5):236–244. doi:10.1055/s-2001-19117

    CAS  PubMed  Google Scholar 

  123. Kondziolka D, Humphreys RP, Hoffman HJ, Hendrick EB, Drake JM (1992) Arteriovenous malformations of the brain in children: a forty year experience. Can J Neurol Sci 19(1):40–45

    CAS  PubMed  Google Scholar 

  124. Kondziolka D, Lunsford LD, Kestle JR (1995) The natural history of cerebral cavernous malformations. J Neurosurg 83(5):820–824. doi:10.3171/jns.1995.83.5.0820

    CAS  PubMed  Google Scholar 

  125. Kraemer DL, Awad IA (1994) Vascular malformations and epilepsy: clinical considerations and basic mechanisms. Epilepsia 35(Suppl 6):S30–43

    PubMed  Google Scholar 

  126. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319. doi:10.1056/NEJM200002033420503

    CAS  PubMed  Google Scholar 

  127. Kwan P, Sperling MR (2009) Refractory seizures: try additional antiepileptic drugs (after two have failed) or go directly to early surgery evaluation? Epilepsia 50(Suppl 8):57–62. doi:10.1111/j.1528-1167.2009.02237.x

    CAS  PubMed  Google Scholar 

  128. Labiner DM, Bagic AI, Herman ST, Fountain NB, Walczak TS, Gumnit RJ, National Association of Epilepsy C (2010) Essential services, personnel, and facilities in specialized epilepsy centers—revised 2010 guidelines. Epilepsia 51(11):2322–2333. doi:10.1111/j.1528-1167.2010.02648.x

    PubMed  Google Scholar 

  129. Leblanc R, Feindel W, Ethier R (1983) Epilepsy from cerebral arteriovenous malformations. Can J Neurol Sci 10(2):91–95

    CAS  PubMed  Google Scholar 

  130. Leventer RJ, Guerrini R, Dobyns WB (2008) Malformations of cortical development and epilepsy. Dialogues Clin Neurosci 10(1):47–62

    PubMed Central  PubMed  Google Scholar 

  131. Luyken C, Blumcke I, Fimmers R, Urbach H, Elger CE, Wiestler OD, Schramm J (2003) The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 44(6):822–830

    PubMed  Google Scholar 

  132. Macrodimitris S, Sherman EM, Williams TS, Bigras C, Wiebe S (2011) Measuring patient satisfaction following epilepsy surgery. Epilepsia 52(8):1409–1417. doi:10.1111/j.1528-1167.2011.03160.x

    PubMed  Google Scholar 

  133. Marcotte L, Crino PB (2006) The neurobiology of the tuberous sclerosis complex. Neuromol Med 8(4):531–546. doi:10.1385/NMM:8:4:531

    CAS  Google Scholar 

  134. Martino J, Honma SM, Findlay AM, Guggisberg AG, Owen JP, Kirsch HE, Berger MS, Nagarajan SS (2011) Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 69(3):521–532. doi:10.1002/ana.22167

    PubMed  Google Scholar 

  135. McKenzie K (1938) The present status of a patient who had the right cerebral hemisphere removed. JAMA: J Am Med Assoc 111:168

    Google Scholar 

  136. Mengesha T, Abu-Ata M, Haas KF, Lavin PJ, Sun DA, Konrad PE, Pearson M, Wang L, Song Y, Abou-Khalil BW (2009) Visual field defects after selective amygdalohippocampectomy and standard temporal lobectomy. J NeuroOphthalmol: Off J N American NeuroOphthalmol Soc 29(3):208–213. doi:10.1097/WNO.0b013e3181b41262

    CAS  Google Scholar 

  137. Milandre L, Pellissier JF, Boudouresques G, Bonnefoi B, Ali Cherif A, Khalil R (1987) Non-hereditary multiple telangiectasias of the central nervous system. Report of two clinicopathological cases. J Neurol Sci 82(1–3):291–304

    CAS  PubMed  Google Scholar 

  138. Moosa AN, Gupta A, Jehi L, Marashly A, Cosmo G, Lachhwani D, Wyllie E, Kotagal P, Bingaman W (2013) Longitudinal seizure outcome and prognostic predictors after hemispherectomy in 170 children. Neurology 80(3):253–260. doi:10.1212/WNL.0b013e31827dead9

    PubMed  Google Scholar 

  139. Moots PL, Maciunas RJ, Eisert DR, Parker RA, Laporte K, Abou-Khalil B (1995) The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52(7):717–724

    CAS  PubMed  Google Scholar 

  140. Moran NF, Fish DR, Kitchen N, Shorvon S, Kendall BE, Stevens JM (1999) Supratentorial cavernous haemangiomas and epilepsy: a review of the literature and case series. J Neurol Neurosurg Psychiatry 66(5):561–568

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Moreno A, de Felipe J, Garcia Sola R, Navarro A, Ramon y Cajal S (2001) Neuronal and mixed neuronal glial tumors associated to epilepsy. A heterogeneous and related group of tumours. Histol Histopathol 16(2):613–622

    CAS  PubMed  Google Scholar 

  142. Morino M, Uda T, Naito K, Yoshimura M, Ishibashi K, Goto T, Ohata K, Hara M (2006) Comparison of neuropsychological outcomes after selective amygdalohippocampectomy versus anterior temporal lobectomy. Epilepsy Behav: E&B 9(1):95–100. doi:10.1016/j.yebeh.2006.04.017

    Google Scholar 

  143. Murphy MJ (1985) Long-term follow-up of seizures associated with cerebral arteriovenous malformations. Results of therapy. Arch Neurol 42(5):477–479

    CAS  PubMed  Google Scholar 

  144. Nagata S, Morioka T, Matsukado K, Natori Y, Sasaki T (2006) Retrospective analysis of the surgically treated temporal lobe arteriovenous malformations with focus on the visual field defects and epilepsy. Surg Neurol 66(1):50–55. doi:10.1016/j.surneu.2005.12.017, discussion 55

    PubMed  Google Scholar 

  145. Nakaji P, Spetzler RF (2005) Indications for surgical treatment of arteriovenous malformations. Neurosurg Clin N Am 16(2):365–366. doi:10.1016/j.nec.2004.08.016

    PubMed  Google Scholar 

  146. O'Brien DF, Basu S, Williams DH, May PL (2006) Anatomical hemispherectomy for intractable seizures: excellent seizure control, low morbidity and no superficial cerebral haemosiderosis. Childs Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg 22(5):489–498. doi:10.1007/s00381-005-0023-1, discussion 499

    Google Scholar 

  147. O'Brien DF, Farrell M, Delanty N, Traunecker H, Perrin R, Smyth MD, Park TS (2007) The Children’s Cancer and Leukaemia Group guidelines for the diagnosis and management of dysembryoplastic neuroepithelial tumours. Br J Neurosurg 21(6):539–549. doi:10.1080/02688690701594817

    PubMed  Google Scholar 

  148. Ogiwara H, Nordli DR, DiPatri AJ, Alden TD, Bowman RM, Tomita T (2010) Pediatric epileptogenic gangliogliomas: seizure outcome and surgical results. J Neurosurg Pediatr 5(3):271–276. doi:10.3171/2009.10.PEDS09372

    PubMed  Google Scholar 

  149. Ojemann RG, Ogilvy CS (1999) Microsurgical treatment of supratentorial cavernous malformations. Neurosurg Clin N Am 10(3):433–440

    CAS  PubMed  Google Scholar 

  150. Ondra SL, Troupp H, George ED, Schwab K (1990) The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 73(3):387–391. doi:10.3171/jns.1990.73.3.0387

    CAS  PubMed  Google Scholar 

  151. Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, Jackson G, Luders HO, Prayson R, Spreafico R, Vinters HV (2004) Terminology and classification of the cortical dysplasias. Neurology 62(6 Suppl 3):S2–8

    CAS  PubMed  Google Scholar 

  152. Park YS, Kim DS, Shim KW, Kim JH, Choi JU (2008) Factors contributing to resectability and seizure outcomes in 44 patients with ganglioglioma. Clin Neurol Neurosurg 110(7):667–673. doi:10.1016/j.clineuro.2008.03.017

    PubMed  Google Scholar 

  153. Parrent AG, Blume WT (1999) Stereotactic amygdalohippocampotomy for the treatment of medial temporal lobe epilepsy. Epilepsia 40(10):1408–1416

    CAS  PubMed  Google Scholar 

  154. Pasquier B, Peoc HM, Fabre-Bocquentin B, Bensaadi L, Pasquier D, Hoffmann D, Kahane P, Tassi L, Le Bas JF, Benabid AL (2002) Surgical pathology of drug-resistant partial epilepsy. A 10-year-experience with a series of 327 consecutive resections. Epileptic Disord 4(2):99–119

    PubMed  Google Scholar 

  155. Phi JH, Chung CK (2009) Brain tumors in the mesial temporal lobe: long-term oncological outcome. Neurosurg Focus 27(2):E5. doi:10.3171/2009.5.FOCUS09106

    PubMed  Google Scholar 

  156. Phi JH, Kim SK, Cho BK, Lee SY, Park SY, Park SJ, Lee SK, Kim KJ, Chung CK (2009) Long-term surgical outcomes of temporal lobe epilepsy associated with low-grade brain tumors. Cancer 115(24):5771–5779. doi:10.1002/cncr.24666

    PubMed  Google Scholar 

  157. Piepgras DG, Sundt TM Jr, Ragoowansi AT, Stevens L (1993) Seizure outcome in patients with surgically treated cerebral arteriovenous malformations. J Neurosurg 78(1):5–11. doi:10.3171/jns.1993.78.1.0005

    CAS  PubMed  Google Scholar 

  158. Pignatti F, van den Bent M, Curran D, Debruyne C, Sylvester R, Therasse P, Afra D, Cornu P, Bolla M, Vecht C, Karim AB, European Organization for R, Treatment of Cancer Brain Tumor Cooperative G, European Organization for R, Treatment of Cancer Radiotherapy Cooperative G (2002) Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol: Off J Am Soc Clin Oncol 20(8):2076–2084

    Google Scholar 

  159. Rasmussen T (1973) Postoperative superficial hemosiderosis of the brain, its diagnosis, treatment and prevention. Trans Am Neurol Assoc 98:133–137

    CAS  PubMed  Google Scholar 

  160. Recht L, Glantz M (2008) Neoplastic diseases. In: Engel J Jr, Pedley T (eds) Epilepsy: a comprehensive textbook. Lippincott, Williams, and Wilkins, New York, pp 2637–2642

    Google Scholar 

  161. Ritaccio A, Beauchamp M, Bosman C, Brunner P, Chang E, Crone N, Gunduz A, Gupta D, Knight R, Leuthardt E, Litt B, Moran D, Ojemann J, Parvizi J, Ramsey N, Rieger J, Viventi J, Voytek B, Williams J, Schalk G (2012) Proceedings of the Third International Workshop on Advances in Electrocorticography. Epilepsy Behav: E&B 25(4):605–613. doi:10.1016/j.yebeh.2012.09.016

    Google Scholar 

  162. Robinson JR, Awad IA, Little JR (1991) Natural history of the cavernous angioma. J Neurosurg 75(5):709–714. doi:10.3171/jns.1991.75.5.0709

    CAS  PubMed  Google Scholar 

  163. Robinson JR Jr, Awad IA, Masaryk TJ, Estes ML (1993) Pathological heterogeneity of angiographically occult vascular malformations of the brain. Neurosurgery 33(4):547–554, discussion 554–545

    PubMed  Google Scholar 

  164. Romanelli P, Weiner HL, Najjar S, Devinsky O (2001) Bilateral resective epilepsy surgery in a child with tuberous sclerosis: case report. Neurosurgery 49(3):732–734, discussion 735

    CAS  PubMed  Google Scholar 

  165. Roper SN (2009) Surgical treatment of the extratemporal epilepsies. Epilepsia 50(Suppl 8):69–74. doi:10.1111/j.1528-1167.2009.02239.x

    PubMed  Google Scholar 

  166. Rosati A, Marconi S, Pollo B, Tomassini A, Lovato L, Maderna E, Maier K, Schwartz A, Rizzuto N, Padovani A, Bonetti B (2009) Epilepsy in glioblastoma multiforme: correlation with glutamine synthetase levels. J Neurooncol 93(3):319–324. doi:10.1007/s11060-008-9794-z

    CAS  PubMed  Google Scholar 

  167. Ross J, Al-Shahi Salman R (2010) Interventions for treating brain arteriovenous malformations in adults. Cochrane Database Syst Rev 7:CD003436. doi:10.1002/14651858.CD003436.pub3

    PubMed  Google Scholar 

  168. Rowland NC, Englot DJ, Cage TA, Sughrue ME, Barbaro NM, Chang EF (2012) A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. J Neurosurg 116(5):1035–1041. doi:10.3171/2012.1.JNS111105

    PubMed  Google Scholar 

  169. Ruda R, Trevisan E, Soffietti R (2010) Epilepsy and brain tumors. Curr Opin Oncol 22(6):611–620. doi:10.1097/CCO.0b013e32833de99d

    PubMed  Google Scholar 

  170. Ryvlin P, Mauguiere F, Sindou M, Froment JC, Cinotti L (1995) Interictal cerebral metabolism and epilepsy in cavernous angiomas. Brain: J Neurol 118(Pt 3):677–687

    Google Scholar 

  171. Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358(1):18–27. doi:10.1056/NEJMoa067819

    CAS  PubMed  Google Scholar 

  172. Scheidegger O, Wiest R, Jann K, Konig T, Meyer K, Hauf M (2013) Epileptogenic developmental venous anomaly: insights from simultaneous EEG/fMRI. Clin EEG Neurosci 44(2):157–160. doi:10.1177/1550059412464463

    Google Scholar 

  173. Schiltz NK, Koroukian SM, Lhatoo SD, Kaiboriboon K (2013) Temporal trends in pre-surgical evaluations and epilepsy surgery in the U.S. from 1998 to 2009. Epilepsy Res 103(2–3):270–278. doi:10.1016/j.eplepsyres.2012.07.016

    PubMed Central  PubMed  Google Scholar 

  174. Schomer DL, Lewis RJ (2012) Stopping seizures early and the surgical epilepsy trial that stopped even earlier. JAMA: J Am Med Assoc 307(9):966–968. doi:10.1001/jama.2012.251

    CAS  Google Scholar 

  175. Schramm J (2008) Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia 49(8):1296–1307. doi:10.1111/j.1528-1167.2008.01604.x

    PubMed  Google Scholar 

  176. Schramm J, Kuczaty S, Sassen R, Elger CE, von Lehe M (2012) Pediatric functional hemispherectomy: outcome in 92 patients. Acta Neurochir (Wien) 154(11):2017–2028. doi:10.1007/s00701-012-1481-3

    CAS  Google Scholar 

  177. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003. doi:10.1016/S1470-2045(11)70196-6

    PubMed  Google Scholar 

  178. Shamji MF, Fric-Shamji EC, Benoit BG (2009) Brain tumors and epilepsy: pathophysiology of peritumoral changes. Neurosurg Rev 32(3):275–284. doi:10.1007/s10143-009-0191-7, discussion 284–276

    PubMed  Google Scholar 

  179. Sheth RD (2002) Adolescent issues in epilepsy. J Child Neurol 17(Suppl 2):2S23–22S27

    PubMed  Google Scholar 

  180. Sims J (1835) On the hypertrophy and atrophy of the brain. Medicochirurgical Trans R Med Chir Soc (London) 19:315–380

    CAS  Google Scholar 

  181. Southwell DG, Garcia PA, Berger MS, Barbaro NM, Chang EF (2012) Long-term seizure control outcomes after resection of gangliogliomas. Neurosurgery 70(6):1406–1413. doi:10.1227/NEU.0b013e3182500a4c, discussion 1413–1404

    PubMed  Google Scholar 

  182. Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7(6):525–537. doi:10.1016/S1474-4422(08)70109-1

    PubMed  Google Scholar 

  183. Spreafico R, Tassi L, Colombo N, Bramerio M, Galli C, Garbelli R, Ferrario A, Lo Russo G, Munari C (2000) Inhibitory circuits in human dysplastic tissue. Epilepsia 41(Suppl 6):S168–173

    PubMed  Google Scholar 

  184. Stavrou I, Baumgartner C, Frischer JM, Trattnig S, Knosp E (2008) Long-term seizure control after resection of supratentorial cavernomas: a retrospective single-center study in 53 patients. Neurosurgery 63(5):888–896. doi:10.1227/01.NEU.0000327881.72964.6E, discussion 897

    PubMed  Google Scholar 

  185. Tang SC, Jeng JS, Liu HM, Yip PK (2003) Diffuse capillary telangiectasia of the brain manifested as a slowly progressive course. Cerebrovasc Dis 15(1–2):140–142

    PubMed  Google Scholar 

  186. Taphoorn MJ (2003) Neurocognitive sequelae in the treatment of low-grade gliomas. Semin Oncol 30(6 Suppl 19):45–48

    PubMed  Google Scholar 

  187. Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3(3):159–168. doi:10.1016/S1474-4422(04)00680-5

    PubMed  Google Scholar 

  188. Thapa A, Chandra PS, Sinha S, Gupta A, Singh M, Suri A, Sharma BS (2009) Surgical interventions in intracranial arteriovenous malformations: indications and outcome analysis in a changing scenario. Neurol India 57(6):749–755. doi:10.4103/0028-3886.59471

    PubMed  Google Scholar 

  189. Thom M (2009) Hippocampal sclerosis: progress since Sommer. Brain Pathol 19(4):565–572. doi:10.1111/j.1750-3639.2008.00201.x

    PubMed  Google Scholar 

  190. Thom M, Mathern GW, Cross JH, Bertram EH (2010) Mesial temporal lobe epilepsy: how do we improve surgical outcome? Ann Neurol 68(4):424–434. doi:10.1002/ana.22142

    PubMed Central  PubMed  Google Scholar 

  191. Thorpe ML, Cordato DJ, Morgan MK, Herkes GK (2000) Postoperative seizure outcome in a series of 114 patients with supratentorial arteriovenous malformations. J Clin Neurosci: Off J Neurosurg Soc Australas 7(2):107–111. doi:10.1054/jocn.1999.0159

    CAS  Google Scholar 

  192. Thudium MO, Campos AR, Urbach H, Clusmann H (2010) The basal temporal approach for mesial temporal surgery: sparing the Meyer loop with navigated diffusion tensor tractography. Neurosurgery 67(2 Suppl Operative):385–390. doi:10.1227/NEU.0b013e3181f7424b

    PubMed  Google Scholar 

  193. Tinkle BT, Schorry EK, Franz DN, Crone KR, Saal HM (2005) Epidemiology of hemimegalencephaly: a case series and review. Am J Med Genet A 139(3):204–211. doi:10.1002/ajmg.a.31024

    PubMed  Google Scholar 

  194. Tonini C, Beghi E, Berg AT, Bogliun G, Giordano L, Newton RW, Tetto A, Vitelli E, Vitezic D, Wiebe S (2004) Predictors of epilepsy surgery outcome: a meta-analysis. Epilepsy Res 62(1):75–87. doi:10.1016/j.eplepsyres.2004.08.006

    CAS  PubMed  Google Scholar 

  195. Villanueva V, Codina M, Elices E (2008) Management of epilepsy in oncological patients. Neurologist 14(6 Suppl 1):S44–54. doi:10.1097/01.nrl.0000340791.53413.f4

    PubMed  Google Scholar 

  196. von Essen C, Rydenhag B, Nystrom B, Mozzi R, van Gelder N, Hamberger A (1996) High levels of glycine and serine as a cause of the seizure symptoms of cavernous angiomas? J Neurochem 67(1):260–264

    Google Scholar 

  197. Wachi M, Tomikawa M, Fukuda M, Kameyama S, Kasahara K, Sasagawa M, Shirane S, Kanazawa O, Yoshino M, Aoki S, Sohma Y (2001) Neuropsychological changes after surgical treatment for temporal lobe epilepsy. Epilepsia 42(Suppl 6):4–8

    PubMed  Google Scholar 

  198. Wang DD, Deans AE, Barkovich AJ, Tihan T, Barbaro NM, Garcia PA, Chang EF (2013) Transmantle sign in focal cortical dysplasia: a unique radiological entity with excellent prognosis for seizure control. J Neurosurg 118(2):337–344. doi:10.3171/2012.10.JNS12119

    PubMed  Google Scholar 

  199. Wang VY, Chang EF, Barbaro NM (2006) Focal cortical dysplasia: a review of pathological features, genetics, and surgical outcome. Neurosurg Focus 20(1):E7

    PubMed  Google Scholar 

  200. Washington CW, McCoy KE, Zipfel GJ (2010) Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation. Neurosurgical Focus 29(3):E7. doi:10.3171/2010.5.FOCUS10149

    PubMed  Google Scholar 

  201. Westerveld M, Sass KJ, Chelune GJ, Hermann BP, Barr WB, Loring DW, Strauss E, Trenerry MR, Perrine K, Spencer DD (2000) Temporal lobectomy in children: cognitive outcome. J Neurosurg 92(1):24–30. doi:10.3171/jns.2000.92.1.0024

    CAS  PubMed  Google Scholar 

  202. Westmoreland B (1999) The electroencephalogram in tuberous sclerosis. In: Rodriguez-Gomez M, Sampson J, Whittemore V (eds) Tubrous sclerosis complex: developmental perspectives in psychiatry, 3rd edn. Oxford University Press, New York, pp 63–73

    Google Scholar 

  203. White JC, Liu CT, Mixter WJ (1948) Focal epilepsy; a statistical study of its causes and the results of surgical treatment; epilepsy secondary to intracranial tumors. N Engl J Med 238(26):891–899. doi:10.1056/NEJM194806242382601

    CAS  PubMed  Google Scholar 

  204. White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB (2001) Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 49(1):67–78

    CAS  PubMed  Google Scholar 

  205. Wiebe S (2004) Effectiveness and safety of epilepsy surgery: what is the evidence? CNS Spectr 9(2):120–122, 126–132

    PubMed  Google Scholar 

  206. Wiebe S, Berg AT (2013) Big epilepsy surgery for little people: what’s the full story on hemispherectomy? Neurology 80(3):232–233. doi:10.1212/WNL.0b013e31827dec32

    PubMed  Google Scholar 

  207. Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345(5):311–318. doi:10.1056/NEJM200108023450501

    CAS  PubMed  Google Scholar 

  208. Wilkins RH (1985) Natural history of intracranial vascular malformations: a review. Neurosurgery 16(3):421–430

    CAS  PubMed  Google Scholar 

  209. Williamson A, Patrylo PR, Lee S, Spencer DD (2003) Physiology of human cortical neurons adjacent to cavernous malformations and tumors. Epilepsia 44(11):1413–1419

    PubMed  Google Scholar 

  210. Wilson SJ, Engel J Jr (2010) Diverse perspectives on developments in epilepsy surgery. Seizure: J Br Epilepsy Assoc 19(10):659–668. doi:10.1016/j.seizure.2010.10.028

    Google Scholar 

  211. Wolf HK, Roos D, Blumcke I, Pietsch T, Wiestler OD (1996) Perilesional neurochemical changes in focal epilepsies. Acta Neuropathol 91(4):376–384

    CAS  PubMed  Google Scholar 

  212. Wolf RL, Ivnik RJ, Hirschorn KA, Sharbrough FW, Cascino GD, Marsh WR (1993) Neurocognitive efficiency following left temporal lobectomy: standard versus limited resection. J Neurosurg 79(1):76–83. doi:10.3171/jns.1993.79.1.0076

    CAS  PubMed  Google Scholar 

  213. Wong M, Ess KC, Uhlmann EJ, Jansen LA, Li W, Crino PB, Mennerick S, Yamada KA, Gutmann DH (2003) Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann Neurol 54(2):251–256. doi:10.1002/ana.10648

    CAS  PubMed  Google Scholar 

  214. Yang I, Chang EF, Han SJ, Barry JJ, Fang S, Tihan T, Barbaro NM, Parsa AT (2011) Early surgical intervention in adult patients with ganglioglioma is associated with improved clinical seizure outcomes. J Clin Neurosci: Off J Neurosurg Soc Australas 18(1):29–33. doi:10.1016/j.jocn.2010.05.002

    Google Scholar 

  215. Yasargil MG, Krayenbuhl N, Roth P, Hsu SP, Yasargil DC (2010) The selective amygdalohippocampectomy for intractable temporal limbic seizures. J Neurosurg 112(1):168–185. doi:10.3171/2008.12.JNS081112

    PubMed  Google Scholar 

  216. Yeh HS, Privitera MD (1991) Secondary epileptogenesis in cerebral arteriovenous malformations. Arch Neurol 48(11):1122–1124

    CAS  PubMed  Google Scholar 

  217. Yeh HS, Tew JM Jr, Gartner M (1993) Seizure control after surgery on cerebral arteriovenous malformations. J Neurosurg 78(1):12–18. doi:10.3171/jns.1993.78.1.0012

    CAS  PubMed  Google Scholar 

  218. Yeon JY, Kim JS, Choi SJ, Seo DW, Hong SB, Hong SC (2009) Supratentorial cavernous angiomas presenting with seizures: surgical outcomes in 60 consecutive patients. Seizure: J Br Epilepsy Assoc 18(1):14–20. doi:10.1016/j.seizure.2008.05.010

    Google Scholar 

  219. You G, Sha ZY, Yan W, Zhang W, Wang YZ, Li SW, Sang L, Wang Z, Li GL, Li SW, Song YJ, Kang CS, Jiang T (2012) Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro-oncology 14(2):230–241. doi:10.1093/neuonc/nor205

    PubMed Central  PubMed  Google Scholar 

  220. Yuan J, Chen Y, Hirsch E (2012) Intracranial electrodes in the presurgical evaluation of epilepsy. Neurol Sci 33(4):723–729. doi:10.1007/s10072-012-1020-2

    PubMed  Google Scholar 

  221. Zaatreh MM, Firlik KS, Spencer DD, Spencer SS (2003) Temporal lobe tumoral epilepsy: characteristics and predictors of surgical outcome. Neurology 61(5):636–641

    PubMed  Google Scholar 

  222. Zevgaridis D, van Velthoven V, Ebeling U, Reulen HJ (1996) Seizure control following surgery in supratentorial cavernous malformations: a retrospective study in 77 patients. Acta Neurochir (Wien) 138(6):672–677

    CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank the practitioners of the UCSF Comprehensive Epilepsy Center for their tireless dedication to the patients and to advancing care.

Disclosures

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario J. Englot.

Additional information

Comments

Hartmut Vatter and Christian E. Elger, Bonn, Germany

Recently, convincing data by Engel et al. are available, which demonstrate the superiority of early resective epilepsy surgery compared with conservative treatment. Accordingly, the recommendations of the International League against Epilepsy and several national neurological societies are supporting an earlier referral of patients with drug-resistant epilepsy in high-volume centers for pre-surgical evaluation and, if suitable, for epilepsy surgery. In spite of these recommendations, neither the number of referrals to specialized centers nor the number of epilepsy surgery increased significantly.

Therefore, this excellent review article by Englot and Chang is hopefully a sufficient instrument to support the operative treatment of epilepsy in specialized centers. The authors report in a concise form about the essential literature, the recent data, and their own experience as a “high-volume center” for resective epilepsy surgery. The review is clearly structured in the most important morphological changes underlying epilepsy. The expected rates of seizure reduction/freedom and the outcome predictors are clearly given in tables for each etiology.

Some important topics could be even more emphasized. The first is the impressing development of the pre-surgical diagnostic opportunities including functional neuroimaging, white matter tractography, and further sophisticated MRI sequences. These methods will more and more precisely define potential epileptic brain areas in correlation with eloquent cortex areas and tracts. The proof of the epilepsy origin of such areas could significantly be improved by the development of invasive electrophysiological investigations, which enable measurements even on a single-cell level. The accurate placement of these probes and the following observation is, however, standard in any specialized epilepsy center. Another significant development is the possibility of an accurate control of the resection of the pre- and/or intraoperatively defined brain tissue by intraoperative MRI. The inclusion of these new developments in the standardized pre- and intra-surgical workup will facilitate specialized centers to perform epilepsy surgery as a well-tailored lesionectomy, in which the personal facilities of the patient, the burden of the seizures, and the etiology of the epilepsy could be taken into account, comparably.

These topics may be added to further support the educational character of this excellent article and to improve the ranking of invasive diagnostic and surgical treatment of drug-resistant epilepsy.

Karl Schaller, Geneva, Switzerland

The present review is coming from one of the most eminent North American epilepsy surgical centers. The authors have outlined the present state of knowledge on epidemiology, underlying pathology and diagnosis of epilepsy on the one hand, and on the presently available options of resective epilepsy surgical procedures and on its potential benefits and outcomes. They have to be commended for the important and comprehensive work they have done in that regard; without doubt, this review will serve as a standard reference on the matter for years to come. As they had restricted themselves to an analysis of the body of literature in the field of resective epilepsy surgery, it is tempting for a commentator to provide some further reflections on the concept of epilepsy surgery as a whole. Epilepsy surgery may have a high socioeconomic impact because there is proof that the mortality rate of epileptics is clearly elevated when compared with person-years of an age-matched control population.

I do fully agree with the authors that, given the right indication, neurosurgical interventions in pediatric epilepsy may improve or normalize the psychomotor development. Concerning the pathogenesis of temporal epilepsy, I would like to add that there is evidence that the particular ontogenetic zytoarchitectonics of the temporal lobe may in part be held responsible for epileptogenesis. This concerns the mesocortical regions, which are connecting the lateral isocortex with the mesial temporal lobe and the limbic system in particular. Thus, it is presumed that this specific zytoarchitecture may facilitate the occurrence of malformations of cortical development and the scattering of ectopic neurons with epileptogenic potential on the one side and the genesis and growth of intrinsic and long-term epilepsy-associated tumors on the other side. These neuropathological specifics in temporal epilepsy seem to be contributive to better long-term epileptological outcome following additional temporo-polar resection in pediatric temporal lobe epilepsy, when compared with the results of more selective temporo-mesial resection. This may be due to the presence of ectopic neurons in the temporal pole of epileptic children, whereas in adult temporal lobe epilepsy, mesio-temporal sclerosis plays a by far more important role. The seizure freeness rates in adults do not differ between standard anterior temporal lobectomies and more selective temporo-mesial approaches, as has been highlighted by the authors

Epilepsy surgery can be considered an asset and a luxury for a given society. This is reflected by the fact that there are important variations between societies with different socioeconomic status with regard to the existence of epilepsy surgical centres. This may even differ from state to state and with the insurance status of the affected population, according to recent North American comparative studies. It is a subspecialty, which is embedded in the setting of pluridisciplinary evaluation and research, which requires important financial funding, and the surgical partner cannot function on his own in a proper way. Only the close cooperation between clinicians, epileptologists, neurosurgeons, neuropsychologists, and neuroradiologists, together with fundamental neuroscientists and signal analysts, allows for profound evaluation of epilepsy disorders and of potential epilepsy surgery candidates. This holds particularly true for the evaluation of extra-temporal and cryptogenic epilepsies. This close cooperation between subspecialized clinicians and researchers from various fields has triggered important knowledge about the function of the human brain, including contributions to modern neuroscientific concepts about memory, behavior, awareness, and the human self. It is thus important that the community with an interest in epilepsy diagnostics and epilepsy surgery will work into the direction of more precise spatial allocation of the epileptogenic zone, be it by a combination of signal analysis and imaging or by co-registration of various morphologic, functional, and metabolic imaging modalities in order to further improve the long-term outcome. There is still considerable room for improvement when looking at the present rates for seizure freeness, which have been outlined by the authors of this review, which are in the range of 60–70 % for temporal lobe epilepsy surgical procedures and clearly lesser for extra-temporal epilepsy surgical procedures. Deep brain stimulation for modulation of neuronal circuits and, experimentally, possibly by optogenetics, will further improve our knowledge and potential clinical outcome in this fascinating field of applied clinical neuroscience.

Antonio Gonçalves-Ferreira, Lisbon, Portugal

The authors present a comprehensive review of rates and predictors of seizure freedom after resective epilepsy surgery based on an extensive class I evidence meta-analyses and the experience of their own institution, the UCSF Comprehensive Epilepsy Center. They divide this subject into four main categories—mesial temporal lobe sclerosis, brain tumors, malformations of cortical development, and vascular malformations—that are indeed the major causes of refractory epilepsy. Nevertheless, other lesions like extrinsic neoplasms, namely, meningeomas are also important epileptogenic pathologies that stay out of the scope of this review, but cannot be forgotten.

The discussion about the surgical management of epilepsy for the lesions focused in each chapter is well elaborated and includes the most significant aspects that must be taken into consideration by those who are involved in this practice. As the title indicates, nothing is mentioned about other kinds of surgical treatment of epilepsy such as radiosurgery or the different forms of palliative surgery, namely, calosotomy or other more recent disconnection procedures; these treatments, as well as the neuromodulation techniques (VNS, DBS), represent nowadays an important contribution for the treatment of refractory epilepsy, although seldom resulting in a complete seizure freedom.

As the authors point in their own “Limitations” comment, they do not present any detailed information about the surgical complications, a matter of great concern for the neurosurgeons. The postoperative quality of life including neuropsychological and psychiatric implications is equally assumed as out of focus in this text.

The conclusions highlight the two main predictors of seizure freedom that are modifiable in the natural history of this kind of epilepsies: the early surgical intervention and the gross total removal of the epileptogenic zone.

Globally considered, it is a very interesting review on this subject, pleasant to read, and providing important updated information for all people engaged in the surgical treatment of epilepsy, notably the young doctors.

This manuscript has not been previously published in whole or in part and is not currently submitted elsewhere for review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englot, D.J., Chang, E.F. Rates and predictors of seizure freedom in resective epilepsy surgery: an update. Neurosurg Rev 37, 389–405 (2014). https://doi.org/10.1007/s10143-014-0527-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-014-0527-9

Keywords

Navigation