Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 3/2006

01.09.2006

Asymmetric Pulses in Cochlear Implants: Effects of Pulse Shape, Polarity, and Rate

verfasst von: Olivier Macherey, Astrid van Wieringen, Robert P. Carlyon, John M. Deeks, Jan Wouters

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 3/2006

Einloggen, um Zugang zu erhalten

Abstract

Existing cochlear implants stimulate the auditory nerve with trains of symmetric biphasic (BP) pulses. Recent data have shown that modifying the pulse shape, while maintaining charge balance, may be beneficial in terms of reducing power consumption, increasing dynamic range, and limiting channel interactions. We measured thresholds and most comfortable levels (MCLs) for various 99-pulses-per-second (pps) stimuli. “Pseudomonophasic (PS)” pulses consist of a brief phase of one polarity followed immediately by a longer and lower-amplitude phase of the opposite polarity. We focused on a novel variant of PS pulses, termed the “delayed pseudomonophasic (DPS)” stimulus, in which the longer phase is presented midway between the short phases of two consecutive pulses. DPS pulse trains produced thresholds that were more than 10 dB lower than those obtained with BP pulses. This reduction was much greater than the 0- to 3-dB drop obtained with PS pulses and was still more than 6 dB when a pulse rate of 892 pps was used. A study of the relative contributions of the two phases of DPS suggested that the short, high-amplitude phase dominated the perceived loudness. This study showed major threshold and MCL reductions using a DPS stimulus compared to the widely used BP stimulus. These reductions, which were predicted by a simple linear filter model, might lead to considerable power savings if implemented in a cochlear implant speech processor.
Literatur
Zurück zum Zitat Bonnet RM, Frijns JH, Peeters S, Briaire JJ. Speech recognition with a cochlear implant using triphasic charge-balanced pulses. Acta Oto-laryngol. 124:371–375, 2004.CrossRef Bonnet RM, Frijns JH, Peeters S, Briaire JJ. Speech recognition with a cochlear implant using triphasic charge-balanced pulses. Acta Oto-laryngol. 124:371–375, 2004.CrossRef
Zurück zum Zitat Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. 24:59–63, 1977.PubMedCrossRef Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. 24:59–63, 1977.PubMedCrossRef
Zurück zum Zitat Carlyon RP, van Wieringen A, Deeks JM, Long CJ, Lyzenga J, Wouters J. Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hear. Res. 205:210–224, 2005.CrossRefPubMed Carlyon RP, van Wieringen A, Deeks JM, Long CJ, Lyzenga J, Wouters J. Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hear. Res. 205:210–224, 2005.CrossRefPubMed
Zurück zum Zitat Charlet de Sauvage R, Lima da Costa D, Erre JP, Aran JM. Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea. Hear. Res. 110:119–134, 1997.CrossRefPubMed Charlet de Sauvage R, Lima da Costa D, Erre JP, Aran JM. Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea. Hear. Res. 110:119–134, 1997.CrossRefPubMed
Zurück zum Zitat De Balthasar C, Boex C, Cosendai G, Valentini G, Sigrist A, Pelizzone M. Channel interactions with high-rate biphasic electrical stimulation in cochlear implant subjects. Hear. Res. 182:77–87, 2003.CrossRefPubMed De Balthasar C, Boex C, Cosendai G, Valentini G, Sigrist A, Pelizzone M. Channel interactions with high-rate biphasic electrical stimulation in cochlear implant subjects. Hear. Res. 182:77–87, 2003.CrossRefPubMed
Zurück zum Zitat Declaration of Helsinki. Recommendations guiding medical doctors in biomedical research involving human subjects. Adopted by the 18th World Medical Assembly, Helsinki, Finland, 1964 and revised by the 29th World Medical Assembly, Tokyo, Japan in 1975. Declaration of Helsinki. Recommendations guiding medical doctors in biomedical research involving human subjects. Adopted by the 18th World Medical Assembly, Helsinki, Finland, 1964 and revised by the 29th World Medical Assembly, Tokyo, Japan in 1975.
Zurück zum Zitat Eddington DK, Tierney J, Noel V, Hermann B, Whearty M, Finley CC. Speech processors for auditory prostheses. Ninth quarterly progress report, NIH contract N01-DC-2-1001, 2004. Eddington DK, Tierney J, Noel V, Hermann B, Whearty M, Finley CC. Speech processors for auditory prostheses. Ninth quarterly progress report, NIH contract N01-DC-2-1001, 2004.
Zurück zum Zitat Favre E, Pelizzone M. Channel interactions in patients using the Ineraid multichannel cochlear implant. Hear. Res. 66:150–156, 1993.CrossRefPubMed Favre E, Pelizzone M. Channel interactions in patients using the Ineraid multichannel cochlear implant. Hear. Res. 66:150–156, 1993.CrossRefPubMed
Zurück zum Zitat Fishman KE, Shannon RV, Slattery WH. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J. Speech Lang. Hear. Res. 40:1201–1215, 1997.PubMed Fishman KE, Shannon RV, Slattery WH. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J. Speech Lang. Hear. Res. 40:1201–1215, 1997.PubMed
Zurück zum Zitat Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110:1150–1163, 2001.PubMedCrossRef Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110:1150–1163, 2001.PubMedCrossRef
Zurück zum Zitat Friesen LM, Shannon RV, Cruz RJ. Effects of stimulation rate on speech recognition with cochlear implants. Audiol. Neuro-otol. 10:169–184, 2005.CrossRef Friesen LM, Shannon RV, Cruz RJ. Effects of stimulation rate on speech recognition with cochlear implants. Audiol. Neuro-otol. 10:169–184, 2005.CrossRef
Zurück zum Zitat Frijns JHM, de Snoo SL, ten Kate JH. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 95:33–48, 1996.CrossRefPubMed Frijns JHM, de Snoo SL, ten Kate JH. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 95:33–48, 1996.CrossRefPubMed
Zurück zum Zitat Javel E, Shepherd RK. Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure. Hear. Res. 140:45–76, 2000.CrossRefPubMed Javel E, Shepherd RK. Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure. Hear. Res. 140:45–76, 2000.CrossRefPubMed
Zurück zum Zitat Laneau J, Boets B, Moonen M, van Wieringen A, Wouters J. A flexible auditory research platform using acoustic or electric stimuli for adults and young children. J. Neurosci. Methods 142:131–136, 2005.CrossRefPubMed Laneau J, Boets B, Moonen M, van Wieringen A, Wouters J. A flexible auditory research platform using acoustic or electric stimuli for adults and young children. J. Neurosci. Methods 142:131–136, 2005.CrossRefPubMed
Zurück zum Zitat Levitt H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49:467–477, 1971.CrossRefPubMed Levitt H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49:467–477, 1971.CrossRefPubMed
Zurück zum Zitat Linthicum FH Jr, Fayad J, Otto SR, Galey FR, House WF. Cochlear implant histopathology. Am. J. Otol. 12:245–311, 1991.PubMed Linthicum FH Jr, Fayad J, Otto SR, Galey FR, House WF. Cochlear implant histopathology. Am. J. Otol. 12:245–311, 1991.PubMed
Zurück zum Zitat Litvak L. BEDCS Bionic Ear Data Collection System. Version 1.16, user manual, 2003. Litvak L. BEDCS Bionic Ear Data Collection System. Version 1.16, user manual, 2003.
Zurück zum Zitat McIntyre CC, Grill WM. Excitation of central nervous system neurons by nonuniform electric fields. Biophys. J. 76:878–888, 1999.PubMedCrossRef McIntyre CC, Grill WM. Excitation of central nervous system neurons by nonuniform electric fields. Biophys. J. 76:878–888, 1999.PubMedCrossRef
Zurück zum Zitat McIntyre CC, Grill WM. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88:1592–1604, 2002.PubMed McIntyre CC, Grill WM. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88:1592–1604, 2002.PubMed
Zurück zum Zitat McKay CM, Henshall KR. The perceptual effects of interphase gap duration in cochlear implant stimulation. Hear. Res. 181:94–99, 2003.CrossRefPubMed McKay CM, Henshall KR. The perceptual effects of interphase gap duration in cochlear implant stimulation. Hear. Res. 181:94–99, 2003.CrossRefPubMed
Zurück zum Zitat Middlebrooks JC. Effects of cochlear–implant pulse rate and inter-channel timing on channel interactions and thresholds. J. Acoust. Soc. Am. 116:452–468, 2004.CrossRefPubMed Middlebrooks JC. Effects of cochlear–implant pulse rate and inter-channel timing on channel interactions and thresholds. J. Acoust. Soc. Am. 116:452–468, 2004.CrossRefPubMed
Zurück zum Zitat Miller CA, Abbas PJ, Rubinstein JT, Robinson BK, Matsuoka AJ, Woodworth G. Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation. Hear. Res. 119:142–154, 1998.CrossRefPubMed Miller CA, Abbas PJ, Rubinstein JT, Robinson BK, Matsuoka AJ, Woodworth G. Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation. Hear. Res. 119:142–154, 1998.CrossRefPubMed
Zurück zum Zitat Miller CA, Abbas PJ, Robinson BK, Rubinstein JT, Matsuoka AJ. Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hear. Res. 130:197–218, 1999.CrossRefPubMed Miller CA, Abbas PJ, Robinson BK, Rubinstein JT, Matsuoka AJ. Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hear. Res. 130:197–218, 1999.CrossRefPubMed
Zurück zum Zitat Miller CA, Robinson BK, Rubinstein JT, Abbas PJ, Runge-Samuelson CL. Auditory nerve responses to monophasic and biphasic electric stimuli. Hear. Res. 151:79–94, 2001.CrossRefPubMed Miller CA, Robinson BK, Rubinstein JT, Abbas PJ, Runge-Samuelson CL. Auditory nerve responses to monophasic and biphasic electric stimuli. Hear. Res. 151:79–94, 2001.CrossRefPubMed
Zurück zum Zitat Miller CA, Abbas PJ, Hay-McCutcheon MJ, Robinson BK, Nourski KV, Jeng FC. Intracochlear and extracochlear ECAPs suggest antidromic action potentials. Hear. Res. 198:75–86, 2004.CrossRefPubMed Miller CA, Abbas PJ, Hay-McCutcheon MJ, Robinson BK, Nourski KV, Jeng FC. Intracochlear and extracochlear ECAPs suggest antidromic action potentials. Hear. Res. 198:75–86, 2004.CrossRefPubMed
Zurück zum Zitat Moon AK, Zwolan TA, Pfingst BE. Effects of phase duration on detection of electrical stimulation of the human cochlea. Hear. Res. 67:166–178, 1993.CrossRefPubMed Moon AK, Zwolan TA, Pfingst BE. Effects of phase duration on detection of electrical stimulation of the human cochlea. Hear. Res. 67:166–178, 1993.CrossRefPubMed
Zurück zum Zitat Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp. Brain Res. 118:477–488, 1998a.CrossRefPubMed Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp. Brain Res. 118:477–488, 1998a.CrossRefPubMed
Zurück zum Zitat Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp. Brain Res. 118:489–500, 1998b.CrossRefPubMed Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp. Brain Res. 118:489–500, 1998b.CrossRefPubMed
Zurück zum Zitat Pfingst BE, Zwolan TA, Holloway LA. Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hear. Res. 112:247–260, 1997.PubMedCrossRef Pfingst BE, Zwolan TA, Holloway LA. Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hear. Res. 112:247–260, 1997.PubMedCrossRef
Zurück zum Zitat Rattay F, Lutter P, Felix H. A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear. Res. 153:43–63, 2001.CrossRefPubMed Rattay F, Lutter P, Felix H. A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear. Res. 153:43–63, 2001.CrossRefPubMed
Zurück zum Zitat Robblee LS, Rose TL. Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation. In: Agnew WF and McCreery DB (eds) Neural Prostheses: Fundamental Studies. Prentice Hall, New Jersey, pp. 25–66, 1990. Robblee LS, Rose TL. Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation. In: Agnew WF and McCreery DB (eds) Neural Prostheses: Fundamental Studies. Prentice Hall, New Jersey, pp. 25–66, 1990.
Zurück zum Zitat Rubinstein JT, Miller CA, Mino H, Abbas PJ. Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Trans. Biomed. Eng. 48:1065–1070, 2001.CrossRefPubMed Rubinstein JT, Miller CA, Mino H, Abbas PJ. Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Trans. Biomed. Eng. 48:1065–1070, 2001.CrossRefPubMed
Zurück zum Zitat Shepherd RK, Javel E. Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear. Res. 130:171–188, 1999.CrossRefPubMed Shepherd RK, Javel E. Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear. Res. 130:171–188, 1999.CrossRefPubMed
Zurück zum Zitat Shepherd RK, Matsushima J, Millard RE, Clark GM. Cochlear pathology following chronic electrical stimulation using non charge balanced stimuli. Acta Oto-laryngol. (Stockh) 111:848–860, 1991.CrossRef Shepherd RK, Matsushima J, Millard RE, Clark GM. Cochlear pathology following chronic electrical stimulation using non charge balanced stimuli. Acta Oto-laryngol. (Stockh) 111:848–860, 1991.CrossRef
Zurück zum Zitat Shepherd RK, Linahan N, Xu J, Clark GM, Araki S. Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli. Acta Oto-laryngol. (Stockh) 119:674–684, 1999.CrossRef Shepherd RK, Linahan N, Xu J, Clark GM, Araki S. Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli. Acta Oto-laryngol. (Stockh) 119:674–684, 1999.CrossRef
Zurück zum Zitat Tanae H, Holcomb WG, Yasuda R, Hogan JF, Glenn WWL. Electrical nerve fatigue: advantages of an alternating bidirectional waveform. J. Surg. Res. 15:14–21, 1973.PubMedCrossRef Tanae H, Holcomb WG, Yasuda R, Hogan JF, Glenn WWL. Electrical nerve fatigue: advantages of an alternating bidirectional waveform. J. Surg. Res. 15:14–21, 1973.PubMedCrossRef
Zurück zum Zitat van den Honert C, Mortimer JT. The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann. Biomed. Eng. 7:117–125, 1979.CrossRefPubMed van den Honert C, Mortimer JT. The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann. Biomed. Eng. 7:117–125, 1979.CrossRefPubMed
Zurück zum Zitat van Wieringen A, Carlyon RP, Laneau J, Wouters J. Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear. Hear. Res. 200:73–86, 2005.CrossRefPubMed van Wieringen A, Carlyon RP, Laneau J, Wouters J. Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear. Hear. Res. 200:73–86, 2005.CrossRefPubMed
Zurück zum Zitat Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. Better speech recognition with cochlear implants. Nature 352:236–238, 1991.CrossRefPubMed Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. Better speech recognition with cochlear implants. Nature 352:236–238, 1991.CrossRefPubMed
Metadaten
Titel
Asymmetric Pulses in Cochlear Implants: Effects of Pulse Shape, Polarity, and Rate
verfasst von
Olivier Macherey
Astrid van Wieringen
Robert P. Carlyon
John M. Deeks
Jan Wouters
Publikationsdatum
01.09.2006
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 3/2006
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-006-0040-0

Weitere Artikel der Ausgabe 3/2006

Journal of the Association for Research in Otolaryngology 3/2006 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.