Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 2/2007

01.06.2007

An Electric Frequency-to-place Map for a Cochlear Implant Patient with Hearing in the Nonimplanted Ear

verfasst von: Michael F. Dorman, Tony Spahr, Rene Gifford, Louise Loiselle, Sharon McKarns, Timothy Holden, Margaret Skinner, Charles Finley

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to relate the pitch of high-rate electrical stimulation delivered to individual cochlear implant electrodes to electrode insertion depth and insertion angle. The patient (CH1) was able to provide pitch matches between electric and acoustic stimulation because he had auditory thresholds in his nonimplanted ear ranging between 30 and 60 dB HL over the range, 250 Hz to 8 kHz. Electrode depth and insertion angle were measured from high-resolution computed tomography (CT) scans of the patient’s temporal bones. The scans were used to create a 3D image volume reconstruction of the cochlea, which allowed visualization of electrode position within the scala. The method of limits was used to establish pitch matches between acoustic pure tones and electric stimulation (a 1,652-pps, unmodulated, pulse train). The pitch matching data demonstrated that, for insertion angles of greater than 450 degrees or greater than approximately 20 mm insertion depth, pitch saturated at approximately 420 Hz. From 20 to 15 mm insertion depth pitch estimates were about one-half octave lower than the Greenwood function. From 13 to 3 mm insertion depth the pitch estimates were approximately one octave lower than the Greenwood function. The pitch match for an electrode only 3.4 mm into the cochlea was 3,447 Hz. These data are consistent with other reports, e.g., Boëx et al. (2006), of a frequency-to-place map for the electrically stimulated cochlea in which perceived pitches for stimulation on individual electrodes are significantly lower than those predicted by the Greenwood function for stimulation at the level of the hair cell.
Literatur
Zurück zum Zitat Boëx C, Baud L, Cosendai G, Sigrist A, Kos M-I, Pelizzone M. Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing. J. Assoc. Res. Otolaryngol. 7(2):110–124, 2006.PubMedCrossRef Boëx C, Baud L, Cosendai G, Sigrist A, Kos M-I, Pelizzone M. Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing. J. Assoc. Res. Otolaryngol. 7(2):110–124, 2006.PubMedCrossRef
Zurück zum Zitat Blamey O, Dooley G, Parisi E, Clark G. Pitch comparisons of acoustically and electrically evoked auditory sensations. Hear. Res. 99:139–150, 1996.PubMedCrossRef Blamey O, Dooley G, Parisi E, Clark G. Pitch comparisons of acoustically and electrically evoked auditory sensations. Hear. Res. 99:139–150, 1996.PubMedCrossRef
Zurück zum Zitat Ching T, Incerti P, Hill M. Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear Hear. 25:9–21, 2004.PubMedCrossRef Ching T, Incerti P, Hill M. Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear Hear. 25:9–21, 2004.PubMedCrossRef
Zurück zum Zitat Dorman MF, Ketten D. Adaptation by a cochlear-implant patient to upward shifts in the frequency representation of speech. Ear Hear. 24:457–460, 2003.PubMedCrossRef Dorman MF, Ketten D. Adaptation by a cochlear-implant patient to upward shifts in the frequency representation of speech. Ear Hear. 24:457–460, 2003.PubMedCrossRef
Zurück zum Zitat Dorman MF, Loizou P, Rainey D. Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J. Acoust. Soc. Am. 102(5):2993–2996, 1997.PubMedCrossRef Dorman MF, Loizou P, Rainey D. Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J. Acoust. Soc. Am. 102(5):2993–2996, 1997.PubMedCrossRef
Zurück zum Zitat Eddington D, Dobelle W, Brackmann, D, Mladejovsky M, Parkin J. Auditory prosthesis research with multiple channel intracochlear stimulation in man. Ann. Otol. Rhinol. Laryngol. 87(6, part 2, Suppl. 53):1–39, 1978.PubMed Eddington D, Dobelle W, Brackmann, D, Mladejovsky M, Parkin J. Auditory prosthesis research with multiple channel intracochlear stimulation in man. Ann. Otol. Rhinol. Laryngol. 87(6, part 2, Suppl. 53):1–39, 1978.PubMed
Zurück zum Zitat Fu Q-J, Shannon R. Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant. Ear Hear. 20(4):332–344, 1999a.PubMedCrossRef Fu Q-J, Shannon R. Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant. Ear Hear. 20(4):332–344, 1999a.PubMedCrossRef
Zurück zum Zitat Fu Q-J, Shannon R. Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing. J. Acoust. Soc. Am. 105(3):1889–1900, 1999b.PubMedCrossRef Fu Q-J, Shannon R. Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing. J. Acoust. Soc. Am. 105(3):1889–1900, 1999b.PubMedCrossRef
Zurück zum Zitat Fu Q-J, Shannon R, Galvin J. Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant. J. Acoust. Soc. Am. 112(4):1664–1674, 2002.PubMedCrossRef Fu Q-J, Shannon R, Galvin J. Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant. J. Acoust. Soc. Am. 112(4):1664–1674, 2002.PubMedCrossRef
Zurück zum Zitat Gantz B, Turner C, Gfeller K, Lowder M. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope 115:796–802, 2005.PubMedCrossRef Gantz B, Turner C, Gfeller K, Lowder M. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope 115:796–802, 2005.PubMedCrossRef
Zurück zum Zitat Greenwood D. A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 87(6):2592–2605, 1990.PubMedCrossRef Greenwood D. A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 87(6):2592–2605, 1990.PubMedCrossRef
Zurück zum Zitat James C, Blamey P, Shallop L, Incerti P, Nicholas A. Contralateral masking in cochlear implant users with residual hearing in the non-implanted ear. Audiol. Neuro-otol. 6:87–97, 2001.CrossRef James C, Blamey P, Shallop L, Incerti P, Nicholas A. Contralateral masking in cochlear implant users with residual hearing in the non-implanted ear. Audiol. Neuro-otol. 6:87–97, 2001.CrossRef
Zurück zum Zitat Kawano A, Seldon H, Clark G. Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall and Rosenthal’s canal. Ann. Otol. Rhinol. Laryngol. 105:701–709, 1996.PubMed Kawano A, Seldon H, Clark G. Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall and Rosenthal’s canal. Ann. Otol. Rhinol. Laryngol. 105:701–709, 1996.PubMed
Zurück zum Zitat Kiefer J, Pok M, Adunka O, Sturzebecher E, Baumgartner W, Schmidt M, Tillein J, Ye Q, Gstoettner W. Combined electric and acoustic stimulation of the auditory system: results of a clinical study. Audiol. Neuro-Otol. 10(3):134–144, 2005.CrossRef Kiefer J, Pok M, Adunka O, Sturzebecher E, Baumgartner W, Schmidt M, Tillein J, Ye Q, Gstoettner W. Combined electric and acoustic stimulation of the auditory system: results of a clinical study. Audiol. Neuro-Otol. 10(3):134–144, 2005.CrossRef
Zurück zum Zitat Kong Y-L, Stickney G, Zeng F-G. Speech and melody recognition in binaurally combined acoustic and electric hearing. J. Acoust. Soc. Am. 117(3):1351–1361, 2005.PubMedCrossRef Kong Y-L, Stickney G, Zeng F-G. Speech and melody recognition in binaurally combined acoustic and electric hearing. J. Acoust. Soc. Am. 117(3):1351–1361, 2005.PubMedCrossRef
Zurück zum Zitat Robb R. The biomedical imaging resource at Mayo Clinic. IEEE Medical Imaging 20:854–867, 2001.CrossRef Robb R. The biomedical imaging resource at Mayo Clinic. IEEE Medical Imaging 20:854–867, 2001.CrossRef
Zurück zum Zitat Rosen S, Faulkner A, Wilkinson L. Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants. J. Acoust. Soc. Am. 106(6):3629–3636, 1999.PubMedCrossRef Rosen S, Faulkner A, Wilkinson L. Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants. J. Acoust. Soc. Am. 106(6):3629–3636, 1999.PubMedCrossRef
Zurück zum Zitat Skinner M, Holden L, Holden T. Effect of frequency boundary assignment on speech recognition with the SPEAK speech-coding strategy. Ann. Otol. Rhinol. Laryng. Suppl 166:307–311, 1995. Skinner M, Holden L, Holden T. Effect of frequency boundary assignment on speech recognition with the SPEAK speech-coding strategy. Ann. Otol. Rhinol. Laryng. Suppl 166:307–311, 1995.
Zurück zum Zitat Spahr A, Dorman M. Performance of patients fit with Advanced Bionics CII and Nucleus 3G cochlear implant devices. Arch. Oto. - Head Neck Sur. 130(5):624–628, 2004.CrossRef Spahr A, Dorman M. Performance of patients fit with Advanced Bionics CII and Nucleus 3G cochlear implant devices. Arch. Oto. - Head Neck Sur. 130(5):624–628, 2004.CrossRef
Zurück zum Zitat Sridhar D, Stakhovskaya O, Leake PA. A frequency-position map for the human spiral ganglion. Audiol. Neuro-otol. 11(Suppl 1):16–20, 2006.CrossRef Sridhar D, Stakhovskaya O, Leake PA. A frequency-position map for the human spiral ganglion. Audiol. Neuro-otol. 11(Suppl 1):16–20, 2006.CrossRef
Zurück zum Zitat v. Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, Sturzebecker E, Klinke R. Electric-acoustic stimulation of the auditory system. ORL 61:334–340, 1999.CrossRef v. Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, Sturzebecker E, Klinke R. Electric-acoustic stimulation of the auditory system. ORL 61:334–340, 1999.CrossRef
Zurück zum Zitat Voie AH, Burns DH, Spelman FA. Orthogonal-plane fluorescence optical sectioning: three dimensional imaging of macroscopic biological specimens. J Microsc 170:229–236, 1993.PubMed Voie AH, Burns DH, Spelman FA. Orthogonal-plane fluorescence optical sectioning: three dimensional imaging of macroscopic biological specimens. J Microsc 170:229–236, 1993.PubMed
Metadaten
Titel
An Electric Frequency-to-place Map for a Cochlear Implant Patient with Hearing in the Nonimplanted Ear
verfasst von
Michael F. Dorman
Tony Spahr
Rene Gifford
Louise Loiselle
Sharon McKarns
Timothy Holden
Margaret Skinner
Charles Finley
Publikationsdatum
01.06.2007
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 2/2007
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-007-0071-1

Weitere Artikel der Ausgabe 2/2007

Journal of the Association for Research in Otolaryngology 2/2007 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.