Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2009

01.03.2009

Encoding Intensity in Ventral Cochlear Nucleus Following Acoustic Trauma: Implications for Loudness Recruitment

verfasst von: Shanqing Cai, Wei-Li D. Ma, Eric D. Young

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Abstract

Loudness recruitment, an abnormally rapid growth of perceived loudness with sound level, is a common symptom of sensorineural hearing loss. Following acoustic trauma, auditory-nerve rate responses are reduced, and rate grows more slowly with sound level, which seems inconsistent with recruitment (Heinz et al., J. Assoc. Res. Otolaryngol. 6:91–105, 2005). However, rate-level functions (RLFs) in the central nervous system may increase in either slope or saturation value following trauma (e.g., Salvi et al., Hear. Res. 147:261–274, 2000), suggesting that recruitment may arise from central changes. In this paper, we studied RLFs of neurons in ventral cochlear nucleus (VCN) of the cat after acoustic trauma. Trauma did not change the general properties of VCN neurons, and the usual VCN functional classifications remained valid (chopper, primary-like, onset, etc.). After trauma, non-primary-like neurons, most noticeably choppers, exhibited elevated maximum discharge rates and steeper RLFs for frequencies at and near best frequency (BF). Primary-like neurons showed the opposite changes. To relate the neurons’ responses to recruitment, rate-balance functions were computed; these show the sound level required to give equal rates in a normal and a traumatized ear and are analogous to loudness balance functions that show the sound levels giving equal perceptual loudness in the two ears of a monaurally hearing-impaired person. The rate-balance functions showed recruitment-like steepening of their slopes in non-primary-like neurons in all conditions. However, primary-like neurons showed recruitment-like behavior only when rates were summated across neurons of all BFs. These results suggest that the non-primary-like, especially chopper, neurons may be the most peripheral site of the physiological changes in the brain that underlie recruitment.
Literatur
Zurück zum Zitat Allen JB. Derecruitment by multiband compression. In: Jesteadt W (ed) Modeling Sensorineural Hearing Loss. London, Erlbaum, 1997. Allen JB. Derecruitment by multiband compression. In: Jesteadt W (ed) Modeling Sensorineural Hearing Loss. London, Erlbaum, 1997.
Zurück zum Zitat Blackburn CC, Sachs MB. Classification of unit types in the anteroventral cochlear nucleus: PST historgrams and regularity analysis. J. Neurophysiol. 62:1303–1329, 1989.PubMed Blackburn CC, Sachs MB. Classification of unit types in the anteroventral cochlear nucleus: PST historgrams and regularity analysis. J. Neurophysiol. 62:1303–1329, 1989.PubMed
Zurück zum Zitat Bourk TR. Electrical Responses of Neural Units in the Anteroventral Cochlear Nucleus of the Cat. Unpublished doctoral thesis. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1976. Bourk TR. Electrical Responses of Neural Units in the Anteroventral Cochlear Nucleus of the Cat. Unpublished doctoral thesis. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1976.
Zurück zum Zitat Buus S, Florentine M. Growth of loudness in listeners with cochlear hearing losses: recruitment reconsidered. J. Assoc. Res. Otolaryngol. 3:120–139, 2002.PubMedCrossRef Buus S, Florentine M. Growth of loudness in listeners with cochlear hearing losses: recruitment reconsidered. J. Assoc. Res. Otolaryngol. 3:120–139, 2002.PubMedCrossRef
Zurück zum Zitat Cai S. Intensity encoding of ventral cochlear nucleus neurons in normal and deafened cats and correlates of loudness recruitment. Unpublished Master’s thesis. Department of Biomedical Engineering. The Johns Hopkins University, Baltimore, MD, 2007. Cai S. Intensity encoding of ventral cochlear nucleus neurons in normal and deafened cats and correlates of loudness recruitment. Unpublished Master’s thesis. Department of Biomedical Engineering. The Johns Hopkins University, Baltimore, MD, 2007.
Zurück zum Zitat Cant NB, Morest DK. The structural basis for stimulus coding in the cochlear nucleus. In: Berlin CI (ed) Hearing Science: Recent Advances. London, College-Hill Press, 1984. Cant NB, Morest DK. The structural basis for stimulus coding in the cochlear nucleus. In: Berlin CI (ed) Hearing Science: Recent Advances. London, College-Hill Press, 1984.
Zurück zum Zitat Carney LH. Sensitivities of cells in anteroventral cochlear nucleus of cat to spatiotemporal discharge patterns across primary afferents. J. Neurophysiol. 64:437–456, 1990.PubMed Carney LH. Sensitivities of cells in anteroventral cochlear nucleus of cat to spatiotemporal discharge patterns across primary afferents. J. Neurophysiol. 64:437–456, 1990.PubMed
Zurück zum Zitat Carney LH. Spatiotemproal encoding of sound level: models for normal encoding and recruitment of loudness. Hear. Res. 76:31–44, 1994.PubMedCrossRef Carney LH. Spatiotemproal encoding of sound level: models for normal encoding and recruitment of loudness. Hear. Res. 76:31–44, 1994.PubMedCrossRef
Zurück zum Zitat Colburn HS, Carney LH, Heinz MG. Quantifying the information in auditory-nerve responses for level discrimination. J. Assoc. Res. Otolaryngol. 4:294–311, 2003.PubMedCrossRef Colburn HS, Carney LH, Heinz MG. Quantifying the information in auditory-nerve responses for level discrimination. J. Assoc. Res. Otolaryngol. 4:294–311, 2003.PubMedCrossRef
Zurück zum Zitat Doucet JR, Ryugo DK. Structural and functional classes of multipolar cells in the ventral cochlear nucleus. Anat. Rec. Pt. A. 288:331–344, 2006.CrossRef Doucet JR, Ryugo DK. Structural and functional classes of multipolar cells in the ventral cochlear nucleus. Anat. Rec. Pt. A. 288:331–344, 2006.CrossRef
Zurück zum Zitat Ertel JE, Fowlkes EB. Some algorithms for linear spline and piecewise multiple linear regression. J. Am. Stat. Assoc. 71:640–648, 1976.CrossRef Ertel JE, Fowlkes EB. Some algorithms for linear spline and piecewise multiple linear regression. J. Am. Stat. Assoc. 71:640–648, 1976.CrossRef
Zurück zum Zitat Evans EF. The sharpening of cochlear frequency selectivity in the normal and abnormal cochlear. Audiology. 14:419–442, 1975.PubMedCrossRef Evans EF. The sharpening of cochlear frequency selectivity in the normal and abnormal cochlear. Audiology. 14:419–442, 1975.PubMedCrossRef
Zurück zum Zitat Ferragamo MJ, Golding NL, Oertel D. Synaptic inputs to stellate cells in the ventral cochlear nucleus. J. Neurophysiol. 79:51–63, 1998.PubMed Ferragamo MJ, Golding NL, Oertel D. Synaptic inputs to stellate cells in the ventral cochlear nucleus. J. Neurophysiol. 79:51–63, 1998.PubMed
Zurück zum Zitat Francis HW, Manis PB. Effects of deafferetiation on the electrophysiology of ventral cochlear nucleus neurons. Hear. Res. 149:91–105, 2000.PubMedCrossRef Francis HW, Manis PB. Effects of deafferetiation on the electrophysiology of ventral cochlear nucleus neurons. Hear. Res. 149:91–105, 2000.PubMedCrossRef
Zurück zum Zitat Golding NL, Robertson D, Oertel D. Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. J. Neurosci. 15:138–3153, 1995. Golding NL, Robertson D, Oertel D. Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. J. Neurosci. 15:138–3153, 1995.
Zurück zum Zitat Harrison RV. Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas. J. Acoust. Soc. Am. 70:1036–1044, 1981.PubMedCrossRef Harrison RV. Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas. J. Acoust. Soc. Am. 70:1036–1044, 1981.PubMedCrossRef
Zurück zum Zitat Heinz MG, Young ED. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. J. Neurophysiol. 91:784–795, 2004.PubMedCrossRef Heinz MG, Young ED. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. J. Neurophysiol. 91:784–795, 2004.PubMedCrossRef
Zurück zum Zitat Heinz MG, Issa JB, Young ED. Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J. Assoc. Res. Otolaryngol. 6:91–105, 2005.PubMedCrossRef Heinz MG, Issa JB, Young ED. Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J. Assoc. Res. Otolaryngol. 6:91–105, 2005.PubMedCrossRef
Zurück zum Zitat Hellman RP. Dependence of loudness growth on skirts of excitation patterns. J. Acoust. Soc. Am. 63:1114–1119, 1978.PubMedCrossRef Hellman RP. Dependence of loudness growth on skirts of excitation patterns. J. Acoust. Soc. Am. 63:1114–1119, 1978.PubMedCrossRef
Zurück zum Zitat Hellman RP, Zwislocki JJ. Loudness function of a 1000-cps tone in presence of a masking noise. J. Acoust. Soc. Am. 36:1618–1627, 1981.CrossRef Hellman RP, Zwislocki JJ. Loudness function of a 1000-cps tone in presence of a masking noise. J. Acoust. Soc. Am. 36:1618–1627, 1981.CrossRef
Zurück zum Zitat Isaacson JS, Walmsley B. Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. J. Neurophysiol. 76:1566–1571, 1996.PubMed Isaacson JS, Walmsley B. Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. J. Neurophysiol. 76:1566–1571, 1996.PubMed
Zurück zum Zitat Ji, T. Representation of a Dynamic Speech Stream in the Cat Auditory Nerve. Unpublished Master’s thesis. Department of Biomedical Engineering. Johns Hopkins University, Baltimore, MD, 2000. Ji, T. Representation of a Dynamic Speech Stream in the Cat Auditory Nerve. Unpublished Master’s thesis. Department of Biomedical Engineering. Johns Hopkins University, Baltimore, MD, 2000.
Zurück zum Zitat Johnson KO. Reconstruction of population response to a vibratory stimulus in quickly adapting mechanoreceptive afferent fiber population innervating glabrous skin of the monkey. J. Neurophysiol. 37:48–72, 1974.PubMed Johnson KO. Reconstruction of population response to a vibratory stimulus in quickly adapting mechanoreceptive afferent fiber population innervating glabrous skin of the monkey. J. Neurophysiol. 37:48–72, 1974.PubMed
Zurück zum Zitat Joris PX, Carney LH, Smith PH, Yin TCT. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II: Responses in the tuning curve tail. J. Neurophysiol. 71:1037–1051, 1994.PubMed Joris PX, Carney LH, Smith PH, Yin TCT. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II: Responses in the tuning curve tail. J. Neurophysiol. 71:1037–1051, 1994.PubMed
Zurück zum Zitat Kiang NY, Moxon EC, Levine RA. Auditory-nerve activity in cats with normal and abnormal cochleas. In: Wolstenholme GEW, Knight T (eds) Sensorineural Hearing Loss. London, Churchill, pp. 241–273, 1970.CrossRef Kiang NY, Moxon EC, Levine RA. Auditory-nerve activity in cats with normal and abnormal cochleas. In: Wolstenholme GEW, Knight T (eds) Sensorineural Hearing Loss. London, Churchill, pp. 241–273, 1970.CrossRef
Zurück zum Zitat Kim JJ, Gross JS, Morest DK, Potashner SJ. Quantitative study of degeneration and new growth of axons and synaptic endings in the chinchilla cochlear nucleus after acoustic overstimulation. J. Neurosci. Res. 77:827–842, 2004. Kim JJ, Gross JS, Morest DK, Potashner SJ. Quantitative study of degeneration and new growth of axons and synaptic endings in the chinchilla cochlear nucleus after acoustic overstimulation. J. Neurosci. Res. 77:827–842, 2004.
Zurück zum Zitat Kopp-Scheinpflug C, Dehmel S, Dörrscheidt GJ, Rübsamen R. Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. J. Neurosci. 22:11004–11018, 2002.PubMed Kopp-Scheinpflug C, Dehmel S, Dörrscheidt GJ, Rübsamen R. Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. J. Neurosci. 22:11004–11018, 2002.PubMed
Zurück zum Zitat Langers DRM, van Dijk P, Schoenmaker ES, Bakes WH. fMRI activation in relation to sound intensity and loudness. NeuroImage. 35:709–718, 2007.PubMedCrossRef Langers DRM, van Dijk P, Schoenmaker ES, Bakes WH. fMRI activation in relation to sound intensity and loudness. NeuroImage. 35:709–718, 2007.PubMedCrossRef
Zurück zum Zitat Leao RN, Oleskevich SSH, Bautisa M, Fyffe RE, Walmsley B. Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice. J. Neurophysiol. 91:1006–1012, 2004.PubMedCrossRef Leao RN, Oleskevich SSH, Bautisa M, Fyffe RE, Walmsley B. Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice. J. Neurophysiol. 91:1006–1012, 2004.PubMedCrossRef
Zurück zum Zitat Leao RN, Svahn K, Bernston A, Walmsley B. Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice. Eur. J. Neurosci. 22:147–157, 2005.PubMedCrossRef Leao RN, Svahn K, Bernston A, Walmsley B. Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice. Eur. J. Neurosci. 22:147–157, 2005.PubMedCrossRef
Zurück zum Zitat Leao RN, Sun H, Svahn K, Bernston A, Youssoufian M, Paolini AG, Fyffe RE, Walmsley B. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J. Physiol. 571:563–578, 2006.PubMedCrossRef Leao RN, Sun H, Svahn K, Bernston A, Youssoufian M, Paolini AG, Fyffe RE, Walmsley B. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J. Physiol. 571:563–578, 2006.PubMedCrossRef
Zurück zum Zitat Liberman MC. Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hear. Res. 16:33–41, 1984.PubMedCrossRef Liberman MC. Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hear. Res. 16:33–41, 1984.PubMedCrossRef
Zurück zum Zitat Liberman MC, Dodds LW. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of thresholds tuning curves. Hear. Res. 16:55–74, 1984.PubMedCrossRef Liberman MC, Dodds LW. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of thresholds tuning curves. Hear. Res. 16:55–74, 1984.PubMedCrossRef
Zurück zum Zitat Liberman MC, Kiang NY. Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear. Res. 16:75–90, 1984.PubMedCrossRef Liberman MC, Kiang NY. Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear. Res. 16:75–90, 1984.PubMedCrossRef
Zurück zum Zitat Lonsbury-Martin BL, Martin GK. Effects of moderately intense sound on auditory sensitivity in rhesus monkeys: behavioral and neural observations. J. Neurophysiol. 46:563–586, 1981.PubMed Lonsbury-Martin BL, Martin GK. Effects of moderately intense sound on auditory sensitivity in rhesus monkeys: behavioral and neural observations. J. Neurophysiol. 46:563–586, 1981.PubMed
Zurück zum Zitat Lu Y, Harris JA, Rubel EW. Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. J. Neurophysiol. 97:635–646, 2007.PubMedCrossRef Lu Y, Harris JA, Rubel EW. Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. J. Neurophysiol. 97:635–646, 2007.PubMedCrossRef
Zurück zum Zitat Ma W-L, Young ED. Loss of inhibition, and decreased spontaneous rates in dorsal cochlear nucleus following acoustic trauma. Hear. Res. 216–217:176–188, 2006.PubMedCrossRef Ma W-L, Young ED. Loss of inhibition, and decreased spontaneous rates in dorsal cochlear nucleus following acoustic trauma. Hear. Res. 216–217:176–188, 2006.PubMedCrossRef
Zurück zum Zitat Manis PB, Marx SO. Outward currents in isolated ventral cochlear nucleus neurons. J. Neurosci. 11:2865–2880, 1991.PubMed Manis PB, Marx SO. Outward currents in isolated ventral cochlear nucleus neurons. J. Neurosci. 11:2865–2880, 1991.PubMed
Zurück zum Zitat May BJ, Le Prell GS, Sachs MB. Vowel representation in the ventral cochlear nucleus of the cat: effect of level, background noise, and behavioral state. J. Neurophysiol. 79:1755–1767, 1998.PubMed May BJ, Le Prell GS, Sachs MB. Vowel representation in the ventral cochlear nucleus of the cat: effect of level, background noise, and behavioral state. J. Neurophysiol. 79:1755–1767, 1998.PubMed
Zurück zum Zitat Melcher JR. The cellular generators of brainstem auditory evoked potential. Unpublished doctoral thesis. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology, Cambridge, MA, 1993. Melcher JR. The cellular generators of brainstem auditory evoked potential. Unpublished doctoral thesis. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology, Cambridge, MA, 1993.
Zurück zum Zitat Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM. GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear. Res. 147:251–260, 2000.PubMedCrossRef Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM. GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear. Res. 147:251–260, 2000.PubMedCrossRef
Zurück zum Zitat Miller RL, Schilling JR, Franck KR, Young ED. Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers. J. Acoust. Soc. Am. 101:3602–3616, 1997.PubMedCrossRef Miller RL, Schilling JR, Franck KR, Young ED. Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers. J. Acoust. Soc. Am. 101:3602–3616, 1997.PubMedCrossRef
Zurück zum Zitat Miskolczy-Fodor F. Relationship between loudness and duration of tonal pulses. III. Response in cases of abnormal loudness function. J. Acoust. Soc. Am. 32:486–492, 1960.CrossRef Miskolczy-Fodor F. Relationship between loudness and duration of tonal pulses. III. Response in cases of abnormal loudness function. J. Acoust. Soc. Am. 32:486–492, 1960.CrossRef
Zurück zum Zitat Moore BCJ. Perceptual Consequences of Cochlear Damage. New York, Oxford University Press, 2002. Moore BCJ. Perceptual Consequences of Cochlear Damage. New York, Oxford University Press, 2002.
Zurück zum Zitat Moore BCJ. Testing the concept of softness imperception: loudness near threshold for hearing-impaired ears. J. Acoust. Soc. Am. 115:3103–3111, 2004.PubMedCrossRef Moore BCJ. Testing the concept of softness imperception: loudness near threshold for hearing-impaired ears. J. Acoust. Soc. Am. 115:3103–3111, 2004.PubMedCrossRef
Zurück zum Zitat Moore BCJ, Glasberg BR. A revised model of loudness perception applied to cochlear hearing loss. Hear. Res. 188:70–88, 2004.PubMedCrossRef Moore BCJ, Glasberg BR. A revised model of loudness perception applied to cochlear hearing loss. Hear. Res. 188:70–88, 2004.PubMedCrossRef
Zurück zum Zitat Moore BCJ, Glasberg BR, Hess RF, Birchall JP. Effects of flanking noise bands on the rate of growth of loudness of tones in normal and recruiting ears. J. Acoust. Soc. Am. 77:1505–1513, 1985.PubMedCrossRef Moore BCJ, Glasberg BR, Hess RF, Birchall JP. Effects of flanking noise bands on the rate of growth of loudness of tones in normal and recruiting ears. J. Acoust. Soc. Am. 77:1505–1513, 1985.PubMedCrossRef
Zurück zum Zitat Morita T, Naito Y, Nagamine T, Fujiki N, Shibasaki H, Ito J. Enhanced activation of the auditory cortex in patients with inner-ear hearing impairment: a magnetoencephalographic study. Clin. Neurophysiol. 114:851–859, 2003.PubMedCrossRef Morita T, Naito Y, Nagamine T, Fujiki N, Shibasaki H, Ito J. Enhanced activation of the auditory cortex in patients with inner-ear hearing impairment: a magnetoencephalographic study. Clin. Neurophysiol. 114:851–859, 2003.PubMedCrossRef
Zurück zum Zitat Mossop JE, Wilson MJ, Caspary DM, Moore DR. Down-regulation of inhibition following unilateral deafening. Hear. Res. 147:183–187, 2000.PubMedCrossRef Mossop JE, Wilson MJ, Caspary DM, Moore DR. Down-regulation of inhibition following unilateral deafening. Hear. Res. 147:183–187, 2000.PubMedCrossRef
Zurück zum Zitat Muniak MA, Ray S, Hsiao SS, Dammann JF, Bensmaia SJ. The neural coding of stimulus intensity: Linking the population response of mechanoreceptive afferents with psychophysical behavior. J. Neurosci. 27:11687–11699, 2007.PubMedCrossRef Muniak MA, Ray S, Hsiao SS, Dammann JF, Bensmaia SJ. The neural coding of stimulus intensity: Linking the population response of mechanoreceptive afferents with psychophysical behavior. J. Neurosci. 27:11687–11699, 2007.PubMedCrossRef
Zurück zum Zitat Nelson JJ, Chen K. The relationship of tinnitus, hyperacusis, and hearing loss. Ear Nose Throat J. 83:472–476, 2004.PubMed Nelson JJ, Chen K. The relationship of tinnitus, hyperacusis, and hearing loss. Ear Nose Throat J. 83:472–476, 2004.PubMed
Zurück zum Zitat Oertel D. Synaptic repsonses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3:2043–2053, 1983.PubMed Oertel D. Synaptic repsonses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3:2043–2053, 1983.PubMed
Zurück zum Zitat Oertel D. Use of brain slices in the study of the auditory system: Spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. J. Acoust. Soc. Am. 78:328–333, 1985.PubMedCrossRef Oertel D. Use of brain slices in the study of the auditory system: Spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. J. Acoust. Soc. Am. 78:328–333, 1985.PubMedCrossRef
Zurück zum Zitat Oleskevich S, Walmsley B. Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. J. Physiol. 540:447–455, 2002.PubMedCrossRef Oleskevich S, Walmsley B. Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. J. Physiol. 540:447–455, 2002.PubMedCrossRef
Zurück zum Zitat Osen KK. Course and termination of primary afferents in the cochlear nuclei of the cat. An experimental study. Arch. Ital. Biol. 108:21–51, 1970.PubMed Osen KK. Course and termination of primary afferents in the cochlear nuclei of the cat. An experimental study. Arch. Ital. Biol. 108:21–51, 1970.PubMed
Zurück zum Zitat Palmer AR, Evans EF. Intensity coding in the auditory periphery of the cat: responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise. Hear. Res. 7:305–323, 1982.PubMedCrossRef Palmer AR, Evans EF. Intensity coding in the auditory periphery of the cat: responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise. Hear. Res. 7:305–323, 1982.PubMedCrossRef
Zurück zum Zitat Pfeiffer RR. Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154:667–668, 1966.PubMedCrossRef Pfeiffer RR. Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154:667–668, 1966.PubMedCrossRef
Zurück zum Zitat Pfeiffer RR, Kim DO. Cochlear nerve fiber responses: distribution along the cochlear partition. J. Acoust. Soc. Am. 58:867–869, 1975.PubMedCrossRef Pfeiffer RR, Kim DO. Cochlear nerve fiber responses: distribution along the cochlear partition. J. Acoust. Soc. Am. 58:867–869, 1975.PubMedCrossRef
Zurück zum Zitat Pickles JO. Psychophysical frequency resolution in the cat as determined by simultaneous masking and its relation to auditory-nerve resolution. J. Acoust. Soc. Am. 66:1725–1732, 1979.PubMedCrossRef Pickles JO. Psychophysical frequency resolution in the cat as determined by simultaneous masking and its relation to auditory-nerve resolution. J. Acoust. Soc. Am. 66:1725–1732, 1979.PubMedCrossRef
Zurück zum Zitat Pickles JO. Auditory-nerve correlates of loudness summation with stimulus bandwidth, in normal and pathological cochleae. Hear. Res. 12:239–250, 1983.PubMedCrossRef Pickles JO. Auditory-nerve correlates of loudness summation with stimulus bandwidth, in normal and pathological cochleae. Hear. Res. 12:239–250, 1983.PubMedCrossRef
Zurück zum Zitat Popelář J, Syka J, Berndt H. Effect of noise on auditory evoked responses in awake guinea pigs. Hear. Res. 26:239–247, 1987.PubMedCrossRef Popelář J, Syka J, Berndt H. Effect of noise on auditory evoked responses in awake guinea pigs. Hear. Res. 26:239–247, 1987.PubMedCrossRef
Zurück zum Zitat Pugh JE Jr, Moody DB, Anderson DJ. Electrocochleography and experimentally induced loudness recruitment. Eur. Arch. Oto-rhino-laryngol. 224:241–255, 1979.CrossRef Pugh JE Jr, Moody DB, Anderson DJ. Electrocochleography and experimentally induced loudness recruitment. Eur. Arch. Oto-rhino-laryngol. 224:241–255, 1979.CrossRef
Zurück zum Zitat Qiu C, Salvi RJ, Ding D, Burkard R. Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear. Res. 139:153–171, 2000.PubMedCrossRef Qiu C, Salvi RJ, Ding D, Burkard R. Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear. Res. 139:153–171, 2000.PubMedCrossRef
Zurück zum Zitat Raman IM, Trussell LO. The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9:173–186, 1992.PubMedCrossRef Raman IM, Trussell LO. The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9:173–186, 1992.PubMedCrossRef
Zurück zum Zitat Redd EE, Pongstaporn T, Ryugo DK. The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear. Res. 147:160–174, 2000.PubMedCrossRef Redd EE, Pongstaporn T, Ryugo DK. The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear. Res. 147:160–174, 2000.PubMedCrossRef
Zurück zum Zitat Redd EE, Cahill HB, Pongstapron T, Ryugo DK. The effects of congenital deafness on auditory nerve synapses: Type I and Type II multipolar cells in the anteroventral cochlear nucleus of cats. J. Assoc. Res. Otolaryngol. 3:403–417, 2002.PubMedCrossRef Redd EE, Cahill HB, Pongstapron T, Ryugo DK. The effects of congenital deafness on auditory nerve synapses: Type I and Type II multipolar cells in the anteroventral cochlear nucleus of cats. J. Assoc. Res. Otolaryngol. 3:403–417, 2002.PubMedCrossRef
Zurück zum Zitat Relkin EM, Doucet JR. Is loudness simply proportional to the auditory nerve spike count? J. Acoust. Soc. Am. 101:2735–2740, 1997.PubMedCrossRef Relkin EM, Doucet JR. Is loudness simply proportional to the auditory nerve spike count? J. Acoust. Soc. Am. 101:2735–2740, 1997.PubMedCrossRef
Zurück zum Zitat Rhode WS, Greenberg S. Lateral suppression and inhibition in the cochlear nucleus of the cat. J. Neurophysiol. 71:493–514, 1994.PubMed Rhode WS, Greenberg S. Lateral suppression and inhibition in the cochlear nucleus of the cat. J. Neurophysiol. 71:493–514, 1994.PubMed
Zurück zum Zitat Rhode WS, Smith PH. Encoding timing and intensity in the ventral cochlear nucleus of the cat. J. Neurophysiol. 56:261–286, 1986.PubMed Rhode WS, Smith PH. Encoding timing and intensity in the ventral cochlear nucleus of the cat. J. Neurophysiol. 56:261–286, 1986.PubMed
Zurück zum Zitat Rhode WS, Oertel D, Smith PH. Physiological response properties of cells labelled intracellularly with horseradish peroxide in cat ventral cochlear nucleus. J. Comp. Neurol. 213:448–463, 1983.PubMedCrossRef Rhode WS, Oertel D, Smith PH. Physiological response properties of cells labelled intracellularly with horseradish peroxide in cat ventral cochlear nucleus. J. Comp. Neurol. 213:448–463, 1983.PubMedCrossRef
Zurück zum Zitat Rothman JS, Manis PB. Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J. Neurophysiol. 89:3070–3082, 2003.PubMedCrossRef Rothman JS, Manis PB. Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J. Neurophysiol. 89:3070–3082, 2003.PubMedCrossRef
Zurück zum Zitat Rothman JS, Young ED. Enhancement of neural synchronization in computational models of ventral cochlear nucleus bushy cells. Audit. Neurosci. 2:47–62, 1996. Rothman JS, Young ED. Enhancement of neural synchronization in computational models of ventral cochlear nucleus bushy cells. Audit. Neurosci. 2:47–62, 1996.
Zurück zum Zitat Ruggero MA, Rich NC. Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J. Neurosci. 11:1057–1067, 1991.PubMed Ruggero MA, Rich NC. Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J. Neurosci. 11:1057–1067, 1991.PubMed
Zurück zum Zitat Ryugo DK. The auditory nerve: peripheral innervation, cell body morphology, and central projections. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York, Springer, 1992. Ryugo DK. The auditory nerve: peripheral innervation, cell body morphology, and central projections. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York, Springer, 1992.
Zurück zum Zitat Ryugo DK, Pongstapron T, Huchton DM, NIparko JK. Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J. Comp. Neurol. 385:230–244, 1997.PubMedCrossRef Ryugo DK, Pongstapron T, Huchton DM, NIparko JK. Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J. Comp. Neurol. 385:230–244, 1997.PubMedCrossRef
Zurück zum Zitat Sachs MB, Abbas PJ. Rate versus level functions for auditory nerve fibers in cats: tone-burst stimuli. J. Acoust. Soc. Am. 56:1835–1847, 1974.PubMedCrossRef Sachs MB, Abbas PJ. Rate versus level functions for auditory nerve fibers in cats: tone-burst stimuli. J. Acoust. Soc. Am. 56:1835–1847, 1974.PubMedCrossRef
Zurück zum Zitat Sachs MB, Young ED. Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J. Acoust. Soc. Am. 66:470–479, 1979.PubMedCrossRef Sachs MB, Young ED. Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J. Acoust. Soc. Am. 66:470–479, 1979.PubMedCrossRef
Zurück zum Zitat Salvi RJ, Hamernik RP, Henderson D. Response patterns of auditory nerve fibers during temporary threshold shift. Hear. Res. 10:37–67, 1983.PubMedCrossRef Salvi RJ, Hamernik RP, Henderson D. Response patterns of auditory nerve fibers during temporary threshold shift. Hear. Res. 10:37–67, 1983.PubMedCrossRef
Zurück zum Zitat Salvi RJ, Saunders JC, Gratton MA, Arehole S, Powers N. Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear. Res. 50:245–258, 1990.PubMedCrossRef Salvi RJ, Saunders JC, Gratton MA, Arehole S, Powers N. Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear. Res. 50:245–258, 1990.PubMedCrossRef
Zurück zum Zitat Salvi RJ, Wang J, Ding D. Auditory plasticity and hyperactivity following cochlear damage. Hear. Res. 147:261–274, 2000.PubMedCrossRef Salvi RJ, Wang J, Ding D. Auditory plasticity and hyperactivity following cochlear damage. Hear. Res. 147:261–274, 2000.PubMedCrossRef
Zurück zum Zitat Saunders JC, Bock GR, James R, Chen C-S. Effects of priming for audiogenic seizure on auditory evoked responses in the cochlear nucleus and inferior colliculus of BALB/c mice. Exp. Neurol. 37:388–394, 1972.PubMedCrossRef Saunders JC, Bock GR, James R, Chen C-S. Effects of priming for audiogenic seizure on auditory evoked responses in the cochlear nucleus and inferior colliculus of BALB/c mice. Exp. Neurol. 37:388–394, 1972.PubMedCrossRef
Zurück zum Zitat Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur. J. Neurosci. 143:103–109, 2006. Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur. J. Neurosci. 143:103–109, 2006.
Zurück zum Zitat Sewell WF. Furosemide selectively reduces one component in rate-level functions from auditory-nerve fibers. Hear. Res. 15:69–72, 1984.PubMedCrossRef Sewell WF. Furosemide selectively reduces one component in rate-level functions from auditory-nerve fibers. Hear. Res. 15:69–72, 1984.PubMedCrossRef
Zurück zum Zitat Sherlock LP, Formby C. Estimates of loudness, loudness discomfort, and the auditory dynamic range: normative estimates, comparison of procedures, and test–retest reliability. J. Am. Acad. Audiol. 16:85–100, 2005.PubMedCrossRef Sherlock LP, Formby C. Estimates of loudness, loudness discomfort, and the auditory dynamic range: normative estimates, comparison of procedures, and test–retest reliability. J. Am. Acad. Audiol. 16:85–100, 2005.PubMedCrossRef
Zurück zum Zitat Smith RL. Encoding sound intensity by auditory neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York, Wiley, pp. 243–274, 1988. Smith RL. Encoding sound intensity by auditory neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York, Wiley, pp. 243–274, 1988.
Zurück zum Zitat Smith PH, Rhode WS. Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J. Comp. Neurol. 266:360–375, 1987.PubMedCrossRef Smith PH, Rhode WS. Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J. Comp. Neurol. 266:360–375, 1987.PubMedCrossRef
Zurück zum Zitat Smith PH, Rhode WS. Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J. Comp. Neurol. 282:595–616, 1989.PubMedCrossRef Smith PH, Rhode WS. Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J. Comp. Neurol. 282:595–616, 1989.PubMedCrossRef
Zurück zum Zitat Stillman JA, Zwislocki JJ, Zhang M, Cefaratti LK. Intensity just-noticeable differences at equal-loudness levels in normal and pathological ears. J. Acoust. Soc. Am. 93:425–434, 1993.PubMedCrossRef Stillman JA, Zwislocki JJ, Zhang M, Cefaratti LK. Intensity just-noticeable differences at equal-loudness levels in normal and pathological ears. J. Acoust. Soc. Am. 93:425–434, 1993.PubMedCrossRef
Zurück zum Zitat Suneja SK, Benson CG, Potashner SJ. Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp. Neurol. 154:473–488, 1998.PubMedCrossRef Suneja SK, Benson CG, Potashner SJ. Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp. Neurol. 154:473–488, 1998.PubMedCrossRef
Zurück zum Zitat Syka J, Rybalko N, Popelář J. Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure. Hear. Res. 78:158–168, 1994.PubMedCrossRef Syka J, Rybalko N, Popelář J. Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure. Hear. Res. 78:158–168, 1994.PubMedCrossRef
Zurück zum Zitat Szczepaniak WS, Møller AR. Evidence of neuronal plasticity within the inferior colliculus after noise exposure: a study of evoked potentials in the rat. Electroencephalogr. Clin. Neurophysiol. 100:158–164, 1996.PubMedCrossRef Szczepaniak WS, Møller AR. Evidence of neuronal plasticity within the inferior colliculus after noise exposure: a study of evoked potentials in the rat. Electroencephalogr. Clin. Neurophysiol. 100:158–164, 1996.PubMedCrossRef
Zurück zum Zitat Vale C, Sanes DH. Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J. Neurosci. 20:1912–1921, 2000.PubMed Vale C, Sanes DH. Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J. Neurosci. 20:1912–1921, 2000.PubMed
Zurück zum Zitat Vale C, Schoorlemmer J, Sanes DH. Deafness disrupts chloride transporter function and inhibitory synaptic transmission. J. Neurosci. 23:7516–7524, 2003.PubMed Vale C, Schoorlemmer J, Sanes DH. Deafness disrupts chloride transporter function and inhibitory synaptic transmission. J. Neurosci. 23:7516–7524, 2003.PubMed
Zurück zum Zitat Vale C, Juíz JM, Moore DR, Sanes DH. Unilateral cochlear ablation produces greater loss of inhibition in the contralateral inferior colliculus. Eur. J. Neurosci. 20:2133–2140, 2004.PubMedCrossRef Vale C, Juíz JM, Moore DR, Sanes DH. Unilateral cochlear ablation produces greater loss of inhibition in the contralateral inferior colliculus. Eur. J. Neurosci. 20:2133–2140, 2004.PubMedCrossRef
Zurück zum Zitat Wang Y, Manis PB. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J. Neurophysiol. 94:1814–1824, 2005.PubMedCrossRef Wang Y, Manis PB. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J. Neurophysiol. 94:1814–1824, 2005.PubMedCrossRef
Zurück zum Zitat Wang J, Ding D, Salvi RJ. Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear. Res. 168:238–249, 2002.PubMedCrossRef Wang J, Ding D, Salvi RJ. Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear. Res. 168:238–249, 2002.PubMedCrossRef
Zurück zum Zitat Willott JF, Milbrandt JC, Bross LS, Caspary DM. Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: effects of cochlear impairment and aging. J. Comp. Neurol. 385:405–414, 1997.PubMedCrossRef Willott JF, Milbrandt JC, Bross LS, Caspary DM. Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: effects of cochlear impairment and aging. J. Comp. Neurol. 385:405–414, 1997.PubMedCrossRef
Zurück zum Zitat Winter IM, Robertson D, Yates GK. Diversity of characteristics frequency-rate-intensity functions in guinea pig auditory nerve fibers. Hear Res 45:191–202, 1990.PubMedCrossRef Winter IM, Robertson D, Yates GK. Diversity of characteristics frequency-rate-intensity functions in guinea pig auditory nerve fibers. Hear Res 45:191–202, 1990.PubMedCrossRef
Zurück zum Zitat Young ED, Oertel D. Cochlear nucleus. In: Sheperd GM (ed) The Synaptic Organization of the Brain. New York, Oxford University Press, 2004. Young ED, Oertel D. Cochlear nucleus. In: Sheperd GM (ed) The Synaptic Organization of the Brain. New York, Oxford University Press, 2004.
Zurück zum Zitat Young ED, Sachs MB. Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation. Neuroscience. 154:127–138, 2008.PubMedCrossRef Young ED, Sachs MB. Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation. Neuroscience. 154:127–138, 2008.PubMedCrossRef
Zurück zum Zitat Young ED, Robert JM, Shofner MP. Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J. Neurophysiol. 60:1–29, 1988.PubMed Young ED, Robert JM, Shofner MP. Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J. Neurophysiol. 60:1–29, 1988.PubMed
Zurück zum Zitat Zeng F-G, Turner CW. Binaural loudness matches in unilaterally impaired listeners. Quart. J. Exp. Psychol. 43A:565–583, 1991. Zeng F-G, Turner CW. Binaural loudness matches in unilaterally impaired listeners. Quart. J. Exp. Psychol. 43A:565–583, 1991.
Metadaten
Titel
Encoding Intensity in Ventral Cochlear Nucleus Following Acoustic Trauma: Implications for Loudness Recruitment
verfasst von
Shanqing Cai
Wei-Li D. Ma
Eric D. Young
Publikationsdatum
01.03.2009
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2009
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-008-0142-y

Weitere Artikel der Ausgabe 1/2009

Journal of the Association for Research in Otolaryngology 1/2009 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.