Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2009

01.03.2009

Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

verfasst von: Hideko Heidi Nakajima, Wei Dong, Elizabeth S. Olson, Saumil N. Merchant, Michael E. Ravicz, John J. Rosowski

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Abstract

We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. The technique we employ, which exploits microscale fiberoptic pressure sensors, enables the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. In our results, the sound pressure in scala vestibuli (P SV) was much greater than scala tympani pressure (P ST), except for very low and high frequencies where P ST significantly affected the input to the cochlea. The differential pressure (P SVP ST) is a superior measure of ossicular transduction of sound compared to P SV alone: (P SVP ST) was reduced by 30 to 50 dB when the ossicular chain was disarticulated, whereas P SV was not reduced as much. The middle ear gain P SV/P EC and the differential pressure normalized to ear canal pressure (P SVP ST)/P EC were generally bandpass in frequency dependence. At frequencies above 1 kHz, the group delay in the middle ear gain is about 83 μs, over twice that of the gerbil. Concurrent measurements of stapes velocity produced estimates of cochlear input impedance, the differential impedance across the partition, and round window impedance. The differential impedance was generally resistive, while the round window impedance was consistent with compliance in conjunction with distributed inertia and damping. Our technique of measuring differential pressure can be used to study inner ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round window stimulation and bone conduction)—situations that cannot be completely quantified by measurements of stapes velocity or scala vestibuli pressure by themselves.
Literatur
Zurück zum Zitat Aibara R, Welsh JT, Puria S, Goode RL. Human middle-ear sound transfer function and cochlear input impedance. Hear. Res. 152:100–109, 2001.PubMedCrossRef Aibara R, Welsh JT, Puria S, Goode RL. Human middle-ear sound transfer function and cochlear input impedance. Hear. Res. 152:100–109, 2001.PubMedCrossRef
Zurück zum Zitat Beranek LL. Acoustics. New York, McGraw-Hill, 1954. Beranek LL. Acoustics. New York, McGraw-Hill, 1954.
Zurück zum Zitat Chien W, Ravicz ME, Merchant SN, Rosowski JJ. The effect of methodological differences in the measurement of stapes motion in live and cadaver ears. Audiol. Neuro-otol. 11:183–197, 2006.CrossRef Chien W, Ravicz ME, Merchant SN, Rosowski JJ. The effect of methodological differences in the measurement of stapes motion in live and cadaver ears. Audiol. Neuro-otol. 11:183–197, 2006.CrossRef
Zurück zum Zitat Colletti V, Soli SD, Carner M, Colletti L. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int. J. Audiol. 45:600–608, 2006.PubMedCrossRef Colletti V, Soli SD, Carner M, Colletti L. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int. J. Audiol. 45:600–608, 2006.PubMedCrossRef
Zurück zum Zitat Dancer A, Franke R. Intracochlear sound pressure measurements in guinea pigs. Hear. Res. 2:191–205, 1980.PubMedCrossRef Dancer A, Franke R. Intracochlear sound pressure measurements in guinea pigs. Hear. Res. 2:191–205, 1980.PubMedCrossRef
Zurück zum Zitat Decraemer WF, Khanna SM. Measurement, visualization and quantitative analysis of complete three-dimensional kinematical data sets of human and cat middle ear. In: Gyo K, Wada H, Hato N, Koike T (eds) Middle Ear Mechanics in Research and Otology. NJ, USA, World Scientific, pp. 3–10, 2004.CrossRef Decraemer WF, Khanna SM. Measurement, visualization and quantitative analysis of complete three-dimensional kinematical data sets of human and cat middle ear. In: Gyo K, Wada H, Hato N, Koike T (eds) Middle Ear Mechanics in Research and Otology. NJ, USA, World Scientific, pp. 3–10, 2004.CrossRef
Zurück zum Zitat Dong W, Olson ES. Middle ear forward and reverse transfer function. J. Neurophysiol. 95:2951–2961, 2006.PubMedCrossRef Dong W, Olson ES. Middle ear forward and reverse transfer function. J. Neurophysiol. 95:2951–2961, 2006.PubMedCrossRef
Zurück zum Zitat Dorf RC. Electrical Engineering Handbook. Florida, CRC, p. 1219, 1993. Dorf RC. Electrical Engineering Handbook. Florida, CRC, p. 1219, 1993.
Zurück zum Zitat Geisler CD, Hubbard AE. The compatibility of various measurements on the ear as related by a simple model. Acoustica. 33:220–222, 1975. Geisler CD, Hubbard AE. The compatibility of various measurements on the ear as related by a simple model. Acoustica. 33:220–222, 1975.
Zurück zum Zitat Hato N, Stenfelt S, Goode RL. Three-dimensional stapes footplate motion in human temporal bones. Audiol. Neuro-otol. 8:140–152, 2003.CrossRef Hato N, Stenfelt S, Goode RL. Three-dimensional stapes footplate motion in human temporal bones. Audiol. Neuro-otol. 8:140–152, 2003.CrossRef
Zurück zum Zitat Heiland KE, Goode RL, Masanori A, Huber AM. A human temporal bone study of stapes footplate movement. Am. J. Otol. 20:81–86, 1999.PubMed Heiland KE, Goode RL, Masanori A, Huber AM. A human temporal bone study of stapes footplate movement. Am. J. Otol. 20:81–86, 1999.PubMed
Zurück zum Zitat Khanna SM, Tonndorf J. The vibratory pattern of the round window membrane in cats. J. Acoust. Soc. Am. 50:1475–1483, 1971.PubMedCrossRef Khanna SM, Tonndorf J. The vibratory pattern of the round window membrane in cats. J. Acoust. Soc. Am. 50:1475–1483, 1971.PubMedCrossRef
Zurück zum Zitat Kringlebotn M. Equality of volume displacements in the inner ear. J. Acoust. Soc. Am. 98:192–196, 1995.PubMedCrossRef Kringlebotn M. Equality of volume displacements in the inner ear. J. Acoust. Soc. Am. 98:192–196, 1995.PubMedCrossRef
Zurück zum Zitat Lynch TJ, Nedzelnitsky V, Peake WT. Input impedance of the cochlea in cat. J. Acoust. Soc. Am. 72:108–130, 1982.PubMedCrossRef Lynch TJ, Nedzelnitsky V, Peake WT. Input impedance of the cochlea in cat. J. Acoust. Soc. Am. 72:108–130, 1982.PubMedCrossRef
Zurück zum Zitat Merchant SN, Rosowski JJ. Auditory physiology (middle-ear mechanics). In: Gulya AJ, Glasscock ME III (eds) Surgery of the Ear. Hamilton Ontario, B.C. Decker, pp. 59–82, 2003. Merchant SN, Rosowski JJ. Auditory physiology (middle-ear mechanics). In: Gulya AJ, Glasscock ME III (eds) Surgery of the Ear. Hamilton Ontario, B.C. Decker, pp. 59–82, 2003.
Zurück zum Zitat Merchant SN, Rosowski JJ. Conductive hearing loss caused by third-window lesions of the inner ear. Otol. Neurotol. 29:282–289, 2008.PubMedCrossRef Merchant SN, Rosowski JJ. Conductive hearing loss caused by third-window lesions of the inner ear. Otol. Neurotol. 29:282–289, 2008.PubMedCrossRef
Zurück zum Zitat Merchant SN, Ravicz ME, Rosowski JJ. Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear. Res. 97:30–45, 1996.PubMedCrossRef Merchant SN, Ravicz ME, Rosowski JJ. Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear. Res. 97:30–45, 1996.PubMedCrossRef
Zurück zum Zitat Nadol JB. Techniques for human temporal bone removal: Information for the scientific community. Otolaryngol. Head Neck Surg. 115:298–305, 1996.PubMedCrossRef Nadol JB. Techniques for human temporal bone removal: Information for the scientific community. Otolaryngol. Head Neck Surg. 115:298–305, 1996.PubMedCrossRef
Zurück zum Zitat Nakajima HH, Ravicz ME, Merchant SN, Peake WT, Rosowski JJ. Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain. Hear. Res. 204:60–77, 2005.PubMedCrossRef Nakajima HH, Ravicz ME, Merchant SN, Peake WT, Rosowski JJ. Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain. Hear. Res. 204:60–77, 2005.PubMedCrossRef
Zurück zum Zitat Nedzelnitsky V. Sound pressure in the basal turn of the cat cochlea. J. Acoust. Soc. Am. 68:1676–1689, 1980.PubMedCrossRef Nedzelnitsky V. Sound pressure in the basal turn of the cat cochlea. J. Acoust. Soc. Am. 68:1676–1689, 1980.PubMedCrossRef
Zurück zum Zitat Olson ES. Observing middle and inner ear mechanics with novel intracochlear pressure sensors. J. Acoust. Soc. Am. 103:3445–3463, 1998.PubMedCrossRef Olson ES. Observing middle and inner ear mechanics with novel intracochlear pressure sensors. J. Acoust. Soc. Am. 103:3445–3463, 1998.PubMedCrossRef
Zurück zum Zitat Puria S. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emission. J. Acoust. Soc. Am. 113:2773–2789, 2003.PubMedCrossRef Puria S. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emission. J. Acoust. Soc. Am. 113:2773–2789, 2003.PubMedCrossRef
Zurück zum Zitat Puria S, Allen JB. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J. Acoust. Soc. Am. 104:3463–3481, 1998.PubMedCrossRef Puria S, Allen JB. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J. Acoust. Soc. Am. 104:3463–3481, 1998.PubMedCrossRef
Zurück zum Zitat Puria S, Peake WT, Rosowski JJ. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J. Acoust. Soc. Am. 101:2754–2770, 1997.PubMedCrossRef Puria S, Peake WT, Rosowski JJ. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J. Acoust. Soc. Am. 101:2754–2770, 1997.PubMedCrossRef
Zurück zum Zitat Roberge JK. Operational Amplifiers Theory and Practice. New York, Wiley, 1975, Section 13.3.5. Roberge JK. Operational Amplifiers Theory and Practice. New York, Wiley, 1975, Section 13.3.5.
Zurück zum Zitat Ruggero MA, Temchin AN. The roles of the external, middle and inner ears in determining the bandwidth of hearing. Proc. Nat. Acad. Sci. U. S. A. 99:13206–13210, 2002.CrossRef Ruggero MA, Temchin AN. The roles of the external, middle and inner ears in determining the bandwidth of hearing. Proc. Nat. Acad. Sci. U. S. A. 99:13206–13210, 2002.CrossRef
Zurück zum Zitat Schloss F, Strasberg M. Hydrophone calibration in a vibrating column of liquid. J. Acoust. Soc. Am. 34:958–960, 1962.CrossRef Schloss F, Strasberg M. Hydrophone calibration in a vibrating column of liquid. J. Acoust. Soc. Am. 34:958–960, 1962.CrossRef
Zurück zum Zitat Sen BK, Wheeler RL. Skin effects for transmission line structures using generic SPICE circuit simulators. In: Proc. Electrical Performance of Electronic Packaging, IEEE 7th Topical Meeting. pp. 128–131, 1998. Sen BK, Wheeler RL. Skin effects for transmission line structures using generic SPICE circuit simulators. In: Proc. Electrical Performance of Electronic Packaging, IEEE 7th Topical Meeting. pp. 128–131, 1998.
Zurück zum Zitat Stenfelt S, Hato N, Goode RL. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J. Acoust. Soc. Am. 115:797–812, 2004a.PubMedCrossRef Stenfelt S, Hato N, Goode RL. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J. Acoust. Soc. Am. 115:797–812, 2004a.PubMedCrossRef
Zurück zum Zitat Stenfelt S, Hato N, Goode RL. Round window membrane motion with air conduction and bone conduction stimulation. Hear. Res. 198:10–24, 2004b.PubMedCrossRef Stenfelt S, Hato N, Goode RL. Round window membrane motion with air conduction and bone conduction stimulation. Hear. Res. 198:10–24, 2004b.PubMedCrossRef
Zurück zum Zitat Veijola T. Acoustic impedance elements modeling oscillating gas flow in micro channels. In: Nanotech 2001 Vol. 1, Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems. NSTI Publications, Taylor & Francis, FL, pp. 96–99, 2001. Veijola T. Acoustic impedance elements modeling oscillating gas flow in micro channels. In: Nanotech 2001 Vol. 1, Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems. NSTI Publications, Taylor & Francis, FL, pp. 96–99, 2001.
Zurück zum Zitat von Békésy G. Experiments in Hearing. New York, McGraw-Hill, 1960. von Békésy G. Experiments in Hearing. New York, McGraw-Hill, 1960.
Zurück zum Zitat Voss SE, Rosowski JJ, Peake WT. Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea. J. Acoust. Soc. Am. 100:1602–1616, 1996.PubMedCrossRef Voss SE, Rosowski JJ, Peake WT. Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea. J. Acoust. Soc. Am. 100:1602–1616, 1996.PubMedCrossRef
Zurück zum Zitat Willi UB, Ferrazzini MA, Huber AM. The incudo-malleolar joint and sound transmission loss. Hear. Res. 174:32–44, 2002.PubMedCrossRef Willi UB, Ferrazzini MA, Huber AM. The incudo-malleolar joint and sound transmission loss. Hear. Res. 174:32–44, 2002.PubMedCrossRef
Zurück zum Zitat Zwislocki JJ. The role of the external and middle ear in sound transmission. In: Tower DB (ed) The Nervous System, Human Communication and its Disorders, vol. 3. New York, Raven, pp. 44–55, 1975. Zwislocki JJ. The role of the external and middle ear in sound transmission. In: Tower DB (ed) The Nervous System, Human Communication and its Disorders, vol. 3. New York, Raven, pp. 44–55, 1975.
Metadaten
Titel
Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones
verfasst von
Hideko Heidi Nakajima
Wei Dong
Elizabeth S. Olson
Saumil N. Merchant
Michael E. Ravicz
John J. Rosowski
Publikationsdatum
01.03.2009
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2009
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-008-0150-y

Weitere Artikel der Ausgabe 1/2009

Journal of the Association for Research in Otolaryngology 1/2009 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.