Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 4/2009

01.12.2009

On- and Off-Frequency Forward Masking by Schroeder-Phase Complexes

verfasst von: Magdalena Wojtczak, Andrew J. Oxenham

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 4/2009

Einloggen, um Zugang zu erhalten

Abstract

Forward masking by harmonic tone complexes was measured for on- and off-frequency maskers as a function of masker phase curvature for two masker durations (30 and 200 ms). For the lowest signal frequency (1 kHz), the results matched predictions based on the expected interactions between the phase curvature and amplitude compression of peripheral auditory filtering. For the higher signal frequencies (2 and 6 kHz), the data increasingly departed from predictions in two respects. First, the effects of the masker phase curvature became stronger with increasing masker duration, inconsistent with the expected effects of the fast-acting compression and time-invariant phase response of basilar membrane filtering. Second, significant effects of masker phase curvature were observed for the off-frequency masker using a 6-kHz signal, inconsistent with predictions based on linear processing of stimuli well below the signal frequency. New predictions were generated assuming an additional effect with a longer time constant, consistent with the influence of medial olivocochlear efferent activation on otoacoustic emissions in humans. Reasonable agreement between the predicted and the measured effects suggests that efferent activation is a potential candidate mechanism to explain certain spectro-temporal masking effects in human hearing.
Fußnoten
1
Each curve representing masked thresholds plotted against the value of C was fitted by a sine function given by \( y = a + b\sin \left( {2\pi gC + h} \right) \), where a, b, g, and h were free parameters that were varied to produce the best fit of y to the data, using a least-squares method (Oxenham and Dau 2001b).
 
2
In the study by Backus and Guinan (2006), the magnitude of the MOCR response was expressed in terms of a change in amplitude of the SFOAE due to the efferent activation normalized to the amplitude of the emission in the absence of the MOCR elicitor. For a 60-dB SPL elicitor (the highest level of the elicitor used in that study), the maximum amplitude of the MOCR response was 70% of the SFOAE. To use an equivalent approach, the change in the effect of the MOCR as a function of level was computed assuming that the difference between the maximum and minimum threshold in linear amplitude units represented 70% of a certain reference amplitude. The threshold differences for the 65- and 45-dB SPL maskers represented a decrease by 40% and 80% of the effect for the 85-dB SPL masker (i.e., 2% per dB), respectively. The percentage of a constant reference was treated as a free parameter and was chosen arbitrarily to produce good predictions for the 6-kHz signal. In addition, the predicted effect for the 85-dB SPL on-frequency masker (white bar) was reduced by 2.5 dB to subtract the estimated effect of efferents for the 30-ms masker. The estimated effect for the two lower levels of the 30-ms masker would be negligible considering the 2% per dB reduction of the MOCR response.
 
Literatur
Zurück zum Zitat Backus BC, Guinan JJ Jr. Time-course of the human medial olivocochlear reflex. J. Acoust. Soc. Am. 119:2889-2904, 2006.CrossRefPubMed Backus BC, Guinan JJ Jr. Time-course of the human medial olivocochlear reflex. J. Acoust. Soc. Am. 119:2889-2904, 2006.CrossRefPubMed
Zurück zum Zitat Carlyon RP, Datta AJ. Excitation produced by Schroeder-phase complexes: Evidence for fast-acting compression in the auditory system. J. Acoust. Soc. Am. 101:3636-3647, 1997a.CrossRef Carlyon RP, Datta AJ. Excitation produced by Schroeder-phase complexes: Evidence for fast-acting compression in the auditory system. J. Acoust. Soc. Am. 101:3636-3647, 1997a.CrossRef
Zurück zum Zitat Carlyon RP, Datta AJ. Masking period patterns of Schroeder-phase complexes: Effects of level, number of components, and phase of flanking components. J. Acoust. Soc. Am. 101:3648-3657, 1997b.CrossRef Carlyon RP, Datta AJ. Masking period patterns of Schroeder-phase complexes: Effects of level, number of components, and phase of flanking components. J. Acoust. Soc. Am. 101:3648-3657, 1997b.CrossRef
Zurück zum Zitat Carney LH, McDuffy MJ, Shekhter I. Frequency glides in the impulse responses of auditory-nerve fibers. J. Acoust. Soc. Am. 105:2384-2391, 1999.CrossRefPubMed Carney LH, McDuffy MJ, Shekhter I. Frequency glides in the impulse responses of auditory-nerve fibers. J. Acoust. Soc. Am. 105:2384-2391, 1999.CrossRefPubMed
Zurück zum Zitat Cheatham MA, Dallos P. The dynamic range of inner hair cell and organ of Corti responses. J. Acoust. Soc. Am. 107:1508-1520, 2000.CrossRefPubMed Cheatham MA, Dallos P. The dynamic range of inner hair cell and organ of Corti responses. J. Acoust. Soc. Am. 107:1508-1520, 2000.CrossRefPubMed
Zurück zum Zitat Dau T, Wegner O, Mellert V, Kollmeier B. Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J. Acoust. Soc. Am. 107:1530-1540, 2000.CrossRefPubMed Dau T, Wegner O, Mellert V, Kollmeier B. Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J. Acoust. Soc. Am. 107:1530-1540, 2000.CrossRefPubMed
Zurück zum Zitat de Boer E, Nuttall AL. The mechanical waveform of the basilar membrane. I. Frequency modulations (“glides”) in impulse responses and cross-correlation functions. J. Acoust. Soc. Am. 101:3583-3592, 1997.CrossRefPubMed de Boer E, Nuttall AL. The mechanical waveform of the basilar membrane. I. Frequency modulations (“glides”) in impulse responses and cross-correlation functions. J. Acoust. Soc. Am. 101:3583-3592, 1997.CrossRefPubMed
Zurück zum Zitat Ewert S, Oxenham AJ. Effects of masker phase curvature for on- and off-frequency simultaneous and nonsimultaneous maskers. Abst. Assoc. Res. Otolaryngol. 25:72, 2002. Ewert S, Oxenham AJ. Effects of masker phase curvature for on- and off-frequency simultaneous and nonsimultaneous maskers. Abst. Assoc. Res. Otolaryngol. 25:72, 2002.
Zurück zum Zitat Guinan JJ, Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589-607, 2006.CrossRefPubMed Guinan JJ, Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589-607, 2006.CrossRefPubMed
Zurück zum Zitat Irino T, Patterson RD. A time-domain, level-dependent auditory filter: The gammachirp. J. Acoust. Soc. Am. 101:412-419, 1997.CrossRef Irino T, Patterson RD. A time-domain, level-dependent auditory filter: The gammachirp. J. Acoust. Soc. Am. 101:412-419, 1997.CrossRef
Zurück zum Zitat Kawase T, Liberman MC. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J. Neurophysiol. 70:2519-2532, 1993.PubMed Kawase T, Liberman MC. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J. Neurophysiol. 70:2519-2532, 1993.PubMed
Zurück zum Zitat Kawase T, Delgutte B, Liberman MC. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol. 70:2533-2549, 1993.PubMed Kawase T, Delgutte B, Liberman MC. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol. 70:2533-2549, 1993.PubMed
Zurück zum Zitat Kohlrausch A, Sander A. Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. J. Acoust. Soc. Am. 97:1817-1829, 1995.CrossRefPubMed Kohlrausch A, Sander A. Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. J. Acoust. Soc. Am. 97:1817-1829, 1995.CrossRefPubMed
Zurück zum Zitat Kubli LR, Leek MR, Dreisbach LE. Acoustic reflexes to Schroeder-phase harmonic complexes in normal-hearing and hearing-impaired individuals. Hear Res. 202:1-12, 2005.CrossRefPubMed Kubli LR, Leek MR, Dreisbach LE. Acoustic reflexes to Schroeder-phase harmonic complexes in normal-hearing and hearing-impaired individuals. Hear Res. 202:1-12, 2005.CrossRefPubMed
Zurück zum Zitat Lentz JJ, Leek MR. Psychophysical estimates of cochlear phase response: Masking by harmonic complexes. J. Assoc. Res. Otolaryngol. 2:408-422, 2001.CrossRefPubMed Lentz JJ, Leek MR. Psychophysical estimates of cochlear phase response: Masking by harmonic complexes. J. Assoc. Res. Otolaryngol. 2:408-422, 2001.CrossRefPubMed
Zurück zum Zitat Levitt H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49:467-477, 1971.CrossRefPubMed Levitt H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49:467-477, 1971.CrossRefPubMed
Zurück zum Zitat Lilaonitkul W, Guinan JJ Jr. Reflex control of the human inner ear: A half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking. J. Neurophysiol. 101:1394-1406, 2009.CrossRefPubMed Lilaonitkul W, Guinan JJ Jr. Reflex control of the human inner ear: A half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking. J. Neurophysiol. 101:1394-1406, 2009.CrossRefPubMed
Zurück zum Zitat Lopez-Poveda EA, Plack CJ, Meddis R. Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. J. Acoust. Soc. Am. 113:951-960, 2003.CrossRefPubMed Lopez-Poveda EA, Plack CJ, Meddis R. Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. J. Acoust. Soc. Am. 113:951-960, 2003.CrossRefPubMed
Zurück zum Zitat Mauermann M, Hohmann V. Differences in loudness of positive and negative Schroeder-phase tone complexes as a function of the fundamental frequency. J. Acoust. Soc. Am. 121:1028-1039, 2007.CrossRefPubMed Mauermann M, Hohmann V. Differences in loudness of positive and negative Schroeder-phase tone complexes as a function of the fundamental frequency. J. Acoust. Soc. Am. 121:1028-1039, 2007.CrossRefPubMed
Zurück zum Zitat Møller AR. Hearing: Its Physiology and Pathophysiology. New York, NY, Academic Press, 2000. Møller AR. Hearing: Its Physiology and Pathophysiology. New York, NY, Academic Press, 2000.
Zurück zum Zitat Nelson DA, Schroder AC, Wojtczak M. A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 110:2045-2064, 2001.CrossRefPubMed Nelson DA, Schroder AC, Wojtczak M. A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 110:2045-2064, 2001.CrossRefPubMed
Zurück zum Zitat Oxenham AJ, Dau T. Reconciling frequency selectivity and phase effects in masking. J. Acoust. Soc. Am. 110:1525-1538, 2001a.CrossRef Oxenham AJ, Dau T. Reconciling frequency selectivity and phase effects in masking. J. Acoust. Soc. Am. 110:1525-1538, 2001a.CrossRef
Zurück zum Zitat Oxenham AJ, Dau T. Towards a measure of auditory-filter phase response. J. Acoust. Soc. Am. 110:3169-3178, 2001b.CrossRef Oxenham AJ, Dau T. Towards a measure of auditory-filter phase response. J. Acoust. Soc. Am. 110:3169-3178, 2001b.CrossRef
Zurück zum Zitat Oxenham AJ, Dau T. Masker phase effects in normal-hearing and hearing-impaired listeners: Evidence for peripheral compression at low signal frequencies. J. Acoust. Soc. Am. 116:2248-2257, 2004.CrossRefPubMed Oxenham AJ, Dau T. Masker phase effects in normal-hearing and hearing-impaired listeners: Evidence for peripheral compression at low signal frequencies. J. Acoust. Soc. Am. 116:2248-2257, 2004.CrossRefPubMed
Zurück zum Zitat Oxenham AJ, Ewert S. Estimates of auditory filter phase response at and below characteristic frequency. J. Acoust. Soc. Am. 117:1713-1716, 2005.CrossRefPubMed Oxenham AJ, Ewert S. Estimates of auditory filter phase response at and below characteristic frequency. J. Acoust. Soc. Am. 117:1713-1716, 2005.CrossRefPubMed
Zurück zum Zitat Oxenham AJ, Moore BCJ. Additivity of masking in normally hearing and hearing-impaired subjects. J. Acoust. Soc. Am. 98:1921-1934, 1995.CrossRefPubMed Oxenham AJ, Moore BCJ. Additivity of masking in normally hearing and hearing-impaired subjects. J. Acoust. Soc. Am. 98:1921-1934, 1995.CrossRefPubMed
Zurück zum Zitat Oxenham AJ, Plack CJ. A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J. Acoust. Soc. Am. 101:3666-3675, 1997.CrossRefPubMed Oxenham AJ, Plack CJ. A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J. Acoust. Soc. Am. 101:3666-3675, 1997.CrossRefPubMed
Zurück zum Zitat Plack CJ, Drga V. Psychophysical evidence for auditory compression at low characteristic frequencies. J. Acoust. Soc. Am. 113:1574-1586, 2003.CrossRefPubMed Plack CJ, Drga V. Psychophysical evidence for auditory compression at low characteristic frequencies. J. Acoust. Soc. Am. 113:1574-1586, 2003.CrossRefPubMed
Zurück zum Zitat Plack CJ, Oxenham AJ, Drga V. Masking by inaudible sounds and the linearity of temporal summation. J. Neurosci. 26:8767-8773, 2006.CrossRefPubMed Plack CJ, Oxenham AJ, Drga V. Masking by inaudible sounds and the linearity of temporal summation. J. Neurosci. 26:8767-8773, 2006.CrossRefPubMed
Zurück zum Zitat Recio A, Rhode WS. Basilar membrane responses to broadband stimuli. J. Acoust. Soc. Am. 108:2281-2298, 2000.CrossRefPubMed Recio A, Rhode WS. Basilar membrane responses to broadband stimuli. J. Acoust. Soc. Am. 108:2281-2298, 2000.CrossRefPubMed
Zurück zum Zitat Rhode WS. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. Acoust. Soc. Am. 49:1218-1231, 1971.CrossRefPubMed Rhode WS. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. Acoust. Soc. Am. 49:1218-1231, 1971.CrossRefPubMed
Zurück zum Zitat Rhode WS, Cooper NP. Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo. Auditory Neurosci. 3:101-121, 1996. Rhode WS, Cooper NP. Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo. Auditory Neurosci. 3:101-121, 1996.
Zurück zum Zitat Rhode WS, Recio A. Basilar-membrane response to multicomponent stimuli in chinchilla. J. Acoust. Soc. Am. 110:981-994, 2001.CrossRefPubMed Rhode WS, Recio A. Basilar-membrane response to multicomponent stimuli in chinchilla. J. Acoust. Soc. Am. 110:981-994, 2001.CrossRefPubMed
Zurück zum Zitat Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L. Basilar-membrane responses to tones at the base of the chinchilla cochlea. J. Acoust. Soc. Am. 101:2151-2163, 1997.CrossRefPubMed Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L. Basilar-membrane responses to tones at the base of the chinchilla cochlea. J. Acoust. Soc. Am. 101:2151-2163, 1997.CrossRefPubMed
Zurück zum Zitat Schroeder MR. Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans. Inf. Theory 16:85-89, 1970.CrossRef Schroeder MR. Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans. Inf. Theory 16:85-89, 1970.CrossRef
Zurück zum Zitat Shera CA. Intensity invariance of fine time structure in basilar-membrane click response: Implications for cochlear mechanics. J. Acoust. Soc. Am. 110:332-348, 2001.CrossRefPubMed Shera CA. Intensity invariance of fine time structure in basilar-membrane click response: Implications for cochlear mechanics. J. Acoust. Soc. Am. 110:332-348, 2001.CrossRefPubMed
Zurück zum Zitat Smith BK, Sieben UK, Kohlrausch A, Schroeder MR. Phase effects in masking related to dispersion in the inner ear. J. Acoust. Soc. Am. 80:1631-1637, 1986.CrossRefPubMed Smith BK, Sieben UK, Kohlrausch A, Schroeder MR. Phase effects in masking related to dispersion in the inner ear. J. Acoust. Soc. Am. 80:1631-1637, 1986.CrossRefPubMed
Zurück zum Zitat Strickland EA. The temporal effect with notched-noise maskers: analysis in terms of input-output functions. J. Acoust. Soc. Am. 115:2234-2245, 2004.CrossRefPubMed Strickland EA. The temporal effect with notched-noise maskers: analysis in terms of input-output functions. J. Acoust. Soc. Am. 115:2234-2245, 2004.CrossRefPubMed
Zurück zum Zitat Strickland EA. The relationship between precursor level and the temporal effect. J. Acoust. Soc. Am. 123:946-954, 2008.CrossRefPubMed Strickland EA. The relationship between precursor level and the temporal effect. J. Acoust. Soc. Am. 123:946-954, 2008.CrossRefPubMed
Zurück zum Zitat Summers V. Effects of hearing impairment and presentation level on masking period patterns for Schroeder-phase harmonic complexes. J. Acoust. Soc. Am. 108:2307-2317, 2000.CrossRefPubMed Summers V. Effects of hearing impairment and presentation level on masking period patterns for Schroeder-phase harmonic complexes. J. Acoust. Soc. Am. 108:2307-2317, 2000.CrossRefPubMed
Zurück zum Zitat Summers V, Leek MR. Masking of tones and speech by Schroeder-phase harmonic complexes in normally hearing and hearing-impaired listeners. Hear. Res. 118:139-150, 1998.CrossRefPubMed Summers V, Leek MR. Masking of tones and speech by Schroeder-phase harmonic complexes in normally hearing and hearing-impaired listeners. Hear. Res. 118:139-150, 1998.CrossRefPubMed
Zurück zum Zitat Summers V, de Boer E, Nuttall AL. Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects. J Acoust. Soc. Am. 114:294-306, 2003.CrossRefPubMed Summers V, de Boer E, Nuttall AL. Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects. J Acoust. Soc. Am. 114:294-306, 2003.CrossRefPubMed
Zurück zum Zitat Temchin AN, Rich NC, Ruggero MA. Low-frequency suppression of auditory nerve responses to characteristic frequency tones. Hearing Res. 113:29-56, 1997.CrossRef Temchin AN, Rich NC, Ruggero MA. Low-frequency suppression of auditory nerve responses to characteristic frequency tones. Hearing Res. 113:29-56, 1997.CrossRef
Zurück zum Zitat Uppenkamp S, Fobel S, Patterson RD. The effects of temporal asymmetry on the detection and perception of short chirps. Hearing Res. 158:71-83, 2001CrossRef Uppenkamp S, Fobel S, Patterson RD. The effects of temporal asymmetry on the detection and perception of short chirps. Hearing Res. 158:71-83, 2001CrossRef
Zurück zum Zitat Wojtczak M, Schroder AC, Kong YY, Nelson DA. The effect of basilar-membrane nonlinearity on the shapes of masking period patterns in normal and impaired hearing. J. Acoust. Soc. Am. 109:1571-1586, 2001.CrossRefPubMed Wojtczak M, Schroder AC, Kong YY, Nelson DA. The effect of basilar-membrane nonlinearity on the shapes of masking period patterns in normal and impaired hearing. J. Acoust. Soc. Am. 109:1571-1586, 2001.CrossRefPubMed
Zurück zum Zitat Zeng F-G, Shannon RV. Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564-566, 1994.CrossRefPubMed Zeng F-G, Shannon RV. Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564-566, 1994.CrossRefPubMed
Metadaten
Titel
On- and Off-Frequency Forward Masking by Schroeder-Phase Complexes
verfasst von
Magdalena Wojtczak
Andrew J. Oxenham
Publikationsdatum
01.12.2009
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 4/2009
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-009-0180-0

Weitere Artikel der Ausgabe 4/2009

Journal of the Association for Research in Otolaryngology 4/2009 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.