Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2011

01.02.2011

Using the Cochlear Microphonic as a Tool to Evaluate Cochlear Function in Mouse Models of Hearing

verfasst von: Mary Ann Cheatham, Khurram Naik, Peter Dallos

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

The cochlear microphonic (CM) can be a useful analytical tool, but many investigators may not be fully familiar with its unique properties to interpret it accurately in mouse models of hearing. The purpose of this report is to develop a model for generation of the CM in wild-type (WT) and prestin knockout mice. Data and modeling results indicate that in the majority of cases, the CM is a passive response, and in the absence of outer hair cell (OHC) damage, mice lacking amplification are expected to generate WT levels of CM for inputs less than ~30 kHz. Hence, this cochlear potential is not a useful metric to estimate changes in amplifier gain. This modeling analysis may explain much of the paradoxical data in the literature. For example, various manipulations, including the application of salicylate and activation of the crossed olivocochlear bundle, reduce the compound action potential but increase or do not change the CM. Based on this current evaluation, CM measurements are consistent with early descriptions where this AC cochlear potential is dominated by basal OHCs, when recorded at the round window.
Literatur
Zurück zum Zitat Adrian ED (1931) The microphonic action of the cochlea in relation to theories of hearing. In: Report of a discussion on audition. Physical Society of London, London, pp 5–9 Adrian ED (1931) The microphonic action of the cochlea in relation to theories of hearing. In: Report of a discussion on audition. Physical Society of London, London, pp 5–9
Zurück zum Zitat Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550PubMed Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550PubMed
Zurück zum Zitat Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea-pig. J Physiol 354:625–646PubMed Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea-pig. J Physiol 354:625–646PubMed
Zurück zum Zitat Cheatham MA, Dallos P (1982) Two-tone interactions in the cochlear microphonic. Hear Res 8:29–48CrossRefPubMed Cheatham MA, Dallos P (1982) Two-tone interactions in the cochlear microphonic. Hear Res 8:29–48CrossRefPubMed
Zurück zum Zitat Cheatham MA, Huynh KH, Gao J, Zuo J, Dallos P (2004) Cochlear function in Prestin knockout mice. J Physiol 560:821–830CrossRefPubMed Cheatham MA, Huynh KH, Gao J, Zuo J, Dallos P (2004) Cochlear function in Prestin knockout mice. J Physiol 560:821–830CrossRefPubMed
Zurück zum Zitat Cheatham MA, Zheng J, Huynh KH, Du GG, Gao J, Zuo J, Navarrete E, Dallos P (2005) Cochlear function in mice with only one copy of the prestin gene. J Physiol 569:229–241CrossRefPubMed Cheatham MA, Zheng J, Huynh KH, Du GG, Gao J, Zuo J, Navarrete E, Dallos P (2005) Cochlear function in mice with only one copy of the prestin gene. J Physiol 569:229–241CrossRefPubMed
Zurück zum Zitat Cheatham MA, Huynh KH, Dallos P (2006) Nonlinear responses in prestin knockout mice: implications for cochlear function. In: Nuttall AL (ed) Auditory mechanisms: processes and models. Portland, OR. World Scientific, Singapore, pp 311–318 Cheatham MA, Huynh KH, Dallos P (2006) Nonlinear responses in prestin knockout mice: implications for cochlear function. In: Nuttall AL (ed) Auditory mechanisms: processes and models. Portland, OR. World Scientific, Singapore, pp 311–318
Zurück zum Zitat Cheatham MA, Zheng J, Huynh KH, Du GG, Edge RM, Anderson CT, Zuo J, Ryan AF, Dallos P (2007) Evaluation of an independent prestin mouse model derived from the 129S1 strain. Audiol Neurotol 12:378–390CrossRef Cheatham MA, Zheng J, Huynh KH, Du GG, Edge RM, Anderson CT, Zuo J, Ryan AF, Dallos P (2007) Evaluation of an independent prestin mouse model derived from the 129S1 strain. Audiol Neurotol 12:378–390CrossRef
Zurück zum Zitat Dallos P (1969) Comments on the differential electrode technique. J Acoust Soc Am 45:999–1007CrossRef Dallos P (1969) Comments on the differential electrode technique. J Acoust Soc Am 45:999–1007CrossRef
Zurück zum Zitat Dallos P (1973a) Cochlear potentials and cochlear mechanics. In: Møller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 335–376 Dallos P (1973a) Cochlear potentials and cochlear mechanics. In: Møller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 335–376
Zurück zum Zitat Dallos P (1973b) The auditory periphery. Academic, New York Dallos P (1973b) The auditory periphery. Academic, New York
Zurück zum Zitat Dallos P (1983) Some electrical circuit properties of the organ of Corti. I. Analysis without reactive elements. Hear Res 12:89–119CrossRefPubMed Dallos P (1983) Some electrical circuit properties of the organ of Corti. I. Analysis without reactive elements. Hear Res 12:89–119CrossRefPubMed
Zurück zum Zitat Dallos P (1984) Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements. Hear Res 14:281–291CrossRefPubMed Dallos P (1984) Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements. Hear Res 14:281–291CrossRefPubMed
Zurück zum Zitat Dallos P, Cheatham MA (1976a) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512CrossRefPubMed Dallos P, Cheatham MA (1976a) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512CrossRefPubMed
Zurück zum Zitat Dallos P, Cheatham MA (1976b) Compound action potential (AP) tuning curves. J Acoust Soc Am 59:591–597CrossRefPubMed Dallos P, Cheatham MA (1976b) Compound action potential (AP) tuning curves. J Acoust Soc Am 59:591–597CrossRefPubMed
Zurück zum Zitat Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383PubMed Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383PubMed
Zurück zum Zitat Dallos P, Wang CY (1974) Bioelectric correlates of kanamycin intoxication. Audiology 13:277–289CrossRefPubMed Dallos P, Wang CY (1974) Bioelectric correlates of kanamycin intoxication. Audiology 13:277–289CrossRefPubMed
Zurück zum Zitat Dallos P, Cheatham MA, Ferraro J (1974) Cochlear mechanics, nonlinearities, and cochlear potentials. J Acoust Soc Am 55:597–605CrossRefPubMed Dallos P, Cheatham MA, Ferraro J (1974) Cochlear mechanics, nonlinearities, and cochlear potentials. J Acoust Soc Am 55:597–605CrossRefPubMed
Zurück zum Zitat Dallos P, Santos-Sacchi J, Flock Å (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584CrossRefPubMed Dallos P, Santos-Sacchi J, Flock Å (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584CrossRefPubMed
Zurück zum Zitat Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WHY, Sengupta S, He DZZ, Zuo J (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:1–7CrossRef Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WHY, Sengupta S, He DZZ, Zuo J (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:1–7CrossRef
Zurück zum Zitat Davis H, Deatherage BH, Eldredge DH, Smith CA (1958) Summating potentials of the cochlea. Am J Physiol 195:251–261PubMed Davis H, Deatherage BH, Eldredge DH, Smith CA (1958) Summating potentials of the cochlea. Am J Physiol 195:251–261PubMed
Zurück zum Zitat Fex J (1959) Augmentation of cochlear microphonic by stimulation of efferent fibres to the cochlea; preliminary report. Acta Otolaryngol 50:540–541CrossRefPubMed Fex J (1959) Augmentation of cochlear microphonic by stimulation of efferent fibres to the cochlea; preliminary report. Acta Otolaryngol 50:540–541CrossRefPubMed
Zurück zum Zitat Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibers in cat. Acta Physiol Scand 55:2–68 Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibers in cat. Acta Physiol Scand 55:2–68
Zurück zum Zitat Fitzgerald JJ, Robertson D, Johnstone BM (1993) Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig. Hear Res 67:147–156CrossRefPubMed Fitzgerald JJ, Robertson D, Johnstone BM (1993) Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig. Hear Res 67:147–156CrossRefPubMed
Zurück zum Zitat Flock Å, Russell I (1976) Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota. J Physiol 257:45–62PubMed Flock Å, Russell I (1976) Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota. J Physiol 257:45–62PubMed
Zurück zum Zitat Guinan JJ (1996) Physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. Springer, New York, pp 435–502 Guinan JJ (1996) Physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. Springer, New York, pp 435–502
Zurück zum Zitat Hallworth R, Evans BN, Dallos P (1993) The location and mechanism of electromotility in guinea pig outer hair cells. J Neurophysiol 70:549–558PubMed Hallworth R, Evans BN, Dallos P (1993) The location and mechanism of electromotility in guinea pig outer hair cells. J Neurophysiol 70:549–558PubMed
Zurück zum Zitat He DZZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429:766–770CrossRefPubMed He DZZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429:766–770CrossRefPubMed
Zurück zum Zitat Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol (Lond) 448:73–98 Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol (Lond) 448:73–98
Zurück zum Zitat Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411CrossRefPubMed Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411CrossRefPubMed
Zurück zum Zitat Jia S, Zuo J, Dallos P, He DZZ (2006) The cochlear amplifier: is it hair bundle motion of outer hair cells? In: Nuttall AF (ed) Auditory mechanisms: processes and models. Portland, OR. World Scientific, Singapore, pp 201–208 Jia S, Zuo J, Dallos P, He DZZ (2006) The cochlear amplifier: is it hair bundle motion of outer hair cells? In: Nuttall AF (ed) Auditory mechanisms: processes and models. Portland, OR. World Scientific, Singapore, pp 201–208
Zurück zum Zitat Johnstone BM, Johnstone JR, Pugsley TD (1966) Membrane resistance in endolymphatic walls of the first turn in the guinea pig cochlea. J Acoust Soc Am 40:1398–1404CrossRefPubMed Johnstone BM, Johnstone JR, Pugsley TD (1966) Membrane resistance in endolymphatic walls of the first turn in the guinea pig cochlea. J Acoust Soc Am 40:1398–1404CrossRefPubMed
Zurück zum Zitat Kakehata S, Santos-Sacchi J (1996) Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J Neurosci 16:4881–4889PubMed Kakehata S, Santos-Sacchi J (1996) Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J Neurosci 16:4881–4889PubMed
Zurück zum Zitat Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54:316–357PubMed Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54:316–357PubMed
Zurück zum Zitat Krishnan G, Chertoff ME (1999) Insights into linear and nonlinear cochlear transduction: application of a new system-identification procedure on transient-evoked otoacoustic emissions data. J Acoust Soc Am 105:770–781CrossRefPubMed Krishnan G, Chertoff ME (1999) Insights into linear and nonlinear cochlear transduction: application of a new system-identification procedure on transient-evoked otoacoustic emissions data. J Acoust Soc Am 105:770–781CrossRefPubMed
Zurück zum Zitat Kujawa SG, Fallon M, Bobbin RP (1992) Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear Res 64:73–80CrossRefPubMed Kujawa SG, Fallon M, Bobbin RP (1992) Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear Res 64:73–80CrossRefPubMed
Zurück zum Zitat Legouix JP, Remond NC, Greenbaum H (1973) Interference and two-tone inhibition. J Acoust Soc Am 53:409–419CrossRefPubMed Legouix JP, Remond NC, Greenbaum H (1973) Interference and two-tone inhibition. J Acoust Soc Am 53:409–419CrossRefPubMed
Zurück zum Zitat Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74CrossRefPubMed Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74CrossRefPubMed
Zurück zum Zitat Liberman MC, Gao J, He DZZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304CrossRefPubMed Liberman MC, Gao J, He DZZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304CrossRefPubMed
Zurück zum Zitat Liberman MC, Zuo J, Guinan JJ Jr (2004) Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? J Acoust Soc Am 116:1649–1655CrossRefPubMed Liberman MC, Zuo J, Guinan JJ Jr (2004) Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? J Acoust Soc Am 116:1649–1655CrossRefPubMed
Zurück zum Zitat Mistrik P, Mullaley C, Mammano F, Ashmore J (2009) Three-dimensional current flow in a large-scale model of the cochlea and the mechanism of amplification of sound. J R Soc Interface 6:279–291CrossRefPubMed Mistrik P, Mullaley C, Mammano F, Ashmore J (2009) Three-dimensional current flow in a large-scale model of the cochlea and the mechanism of amplification of sound. J R Soc Interface 6:279–291CrossRefPubMed
Zurück zum Zitat Müller M, von Hunerbein K, Hoidis S, Smolders JW (2005) A physiological place–frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73CrossRefPubMed Müller M, von Hunerbein K, Hoidis S, Smolders JW (2005) A physiological place–frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73CrossRefPubMed
Zurück zum Zitat Müller M, Hoidis S, Smolders JW (2010) A physiological frequency–position map of the chinchilla cochlea. Hear Res 268:184–193CrossRefPubMed Müller M, Hoidis S, Smolders JW (2010) A physiological frequency–position map of the chinchilla cochlea. Hear Res 268:184–193CrossRefPubMed
Zurück zum Zitat Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332PubMed Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332PubMed
Zurück zum Zitat Narayan SS, Temchin AN, Recio A, Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884CrossRefPubMed Narayan SS, Temchin AN, Recio A, Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884CrossRefPubMed
Zurück zum Zitat Oliver D, He DZZ, Klocker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343CrossRefPubMed Oliver D, He DZZ, Klocker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343CrossRefPubMed
Zurück zum Zitat Özdamar Ö, Dallos P (1976) Input–output functions of cochlear whole-nerve action potentials: interpretation in terms of one population of neurons. J Acoust Soc Am 59:143–147CrossRefPubMed Özdamar Ö, Dallos P (1976) Input–output functions of cochlear whole-nerve action potentials: interpretation in terms of one population of neurons. J Acoust Soc Am 59:143–147CrossRefPubMed
Zurück zum Zitat Patuzzi RB, Moleirinho A (1998) Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea. Hear Res 125:1–16CrossRefPubMed Patuzzi RB, Moleirinho A (1998) Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea. Hear Res 125:1–16CrossRefPubMed
Zurück zum Zitat Patuzzi RB, Rajan R (1990) Does electrical stimulation of the crossed olivo-cochlear bundle produce movement of the organ of Corti? Hear Res 45:15–32CrossRefPubMed Patuzzi RB, Rajan R (1990) Does electrical stimulation of the crossed olivo-cochlear bundle produce movement of the organ of Corti? Hear Res 45:15–32CrossRefPubMed
Zurück zum Zitat Patuzzi RB, Yates GK, Johnstone BM (1989a) The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig. Hear Res 39:177–188CrossRefPubMed Patuzzi RB, Yates GK, Johnstone BM (1989a) The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig. Hear Res 39:177–188CrossRefPubMed
Zurück zum Zitat Patuzzi RB, Yates GK, Johnstone BM (1989b) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72CrossRefPubMed Patuzzi RB, Yates GK, Johnstone BM (1989b) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72CrossRefPubMed
Zurück zum Zitat Peleg U, Perez R, Freeman S, Sohmer H (2007) Salicylate ototoxicity and its implications for cochlear microphonic potential generation. J Basic Clin Physiol Pharmacol 18:173–188PubMed Peleg U, Perez R, Freeman S, Sohmer H (2007) Salicylate ototoxicity and its implications for cochlear microphonic potential generation. J Basic Clin Physiol Pharmacol 18:173–188PubMed
Zurück zum Zitat Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990CrossRefPubMed Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990CrossRefPubMed
Zurück zum Zitat Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352PubMed Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352PubMed
Zurück zum Zitat Ruggero MA, Narayan SS, Temchin AN, Recio A (2000) Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proc Natl Acad Sci USA 97:11744–11750CrossRefPubMed Ruggero MA, Narayan SS, Temchin AN, Recio A (2000) Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proc Natl Acad Sci USA 97:11744–11750CrossRefPubMed
Zurück zum Zitat Russell IJ, Murugasu E (1997) Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 102:1734–1738CrossRefPubMed Russell IJ, Murugasu E (1997) Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 102:1734–1738CrossRefPubMed
Zurück zum Zitat Russell IJ, Sellick PM (1983) Low-frequency characteristics of intracellularly recorded receptor-potentials in guinea pig cochlear hair cells. J Physiol 338:179–206PubMed Russell IJ, Sellick PM (1983) Low-frequency characteristics of intracellularly recorded receptor-potentials in guinea pig cochlear hair cells. J Physiol 338:179–206PubMed
Zurück zum Zitat Ryan A, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253:44–46CrossRefPubMed Ryan A, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253:44–46CrossRefPubMed
Zurück zum Zitat Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–30110PubMed Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–30110PubMed
Zurück zum Zitat Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150CrossRefPubMed Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150CrossRefPubMed
Zurück zum Zitat Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718CrossRefPubMed Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718CrossRefPubMed
Zurück zum Zitat Strelioff D (1973) A computer simulation of the generation and distribution of cochlear potentials. J Acoust Soc Am 54:620–629CrossRefPubMed Strelioff D (1973) A computer simulation of the generation and distribution of cochlear potentials. J Acoust Soc Am 54:620–629CrossRefPubMed
Zurück zum Zitat Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569CrossRefPubMed Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569CrossRefPubMed
Zurück zum Zitat Tasaki I, Fernandez C (1952) Modification of cochlear microphonics and action potentials by KC1 solution and by direct currents. J Neurophysiol 15:497–512PubMed Tasaki I, Fernandez C (1952) Modification of cochlear microphonics and action potentials by KC1 solution and by direct currents. J Neurophysiol 15:497–512PubMed
Zurück zum Zitat Tasaki I, Davis H, Legouix JP (1952) The space–time pattern of the cochlear microphonic (guinea pig), as recorded by differential electrodes. J Acoust Soc Am 24:502–518CrossRef Tasaki I, Davis H, Legouix JP (1952) The space–time pattern of the cochlear microphonic (guinea pig), as recorded by differential electrodes. J Acoust Soc Am 24:502–518CrossRef
Zurück zum Zitat Teas DC, Eldredge DH, Davis H (1962) Cochlear responses to acoustic transients: an interpretation of whole-nerve action potentials. J Acoust Soc Am 34:1438–1459CrossRef Teas DC, Eldredge DH, Davis H (1962) Cochlear responses to acoustic transients: an interpretation of whole-nerve action potentials. J Acoust Soc Am 34:1438–1459CrossRef
Zurück zum Zitat von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York
Zurück zum Zitat Wever EG, Bray C (1931) Action currents in the auditory nerve in response to acoustic stimulation. Proc Nat Acad Sci 16:344–350CrossRef Wever EG, Bray C (1931) Action currents in the auditory nerve in response to acoustic stimulation. Proc Nat Acad Sci 16:344–350CrossRef
Zurück zum Zitat Whitfield IC, Ross HF (1965) Cochlear-microphonic and summating potentials and the outputs of individual hair-cell generators. J Acoust Soc Am 38:126–131CrossRefPubMed Whitfield IC, Ross HF (1965) Cochlear-microphonic and summating potentials and the outputs of individual hair-cell generators. J Acoust Soc Am 38:126–131CrossRefPubMed
Zurück zum Zitat Wiederhold M, Kiang N (1970) Effects of electrical stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965CrossRefPubMed Wiederhold M, Kiang N (1970) Effects of electrical stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965CrossRefPubMed
Zurück zum Zitat Wu X, Gao J, Guo Y, Zuo J (2004) Hearing threshold elevation precedes hair-cell loss in prestin knockout mice. Brain Res Mol Brain Res 126:30–37CrossRefPubMed Wu X, Gao J, Guo Y, Zuo J (2004) Hearing threshold elevation precedes hair-cell loss in prestin knockout mice. Brain Res Mol Brain Res 126:30–37CrossRefPubMed
Metadaten
Titel
Using the Cochlear Microphonic as a Tool to Evaluate Cochlear Function in Mouse Models of Hearing
verfasst von
Mary Ann Cheatham
Khurram Naik
Peter Dallos
Publikationsdatum
01.02.2011
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2011
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-010-0240-5

Weitere Artikel der Ausgabe 1/2011

Journal of the Association for Research in Otolaryngology 1/2011 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.