Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2012

01.02.2012

Effects of Low-Frequency Biasing on Otoacoustic and Neural Measures Suggest that Stimulus-Frequency Otoacoustic Emissions Originate Near the Peak Region of the Traveling Wave

verfasst von: Jeffery T. Lichtenhan

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

Stimulus-frequency otoacoustic emissions (SFOAEs) have been used to study a variety of topics in cochlear mechanics, although a current topic of debate is where in the cochlea these emissions are generated. One hypothesis is that SFOAE generation is predominately near the peak region of the traveling wave. An opposing hypothesis is that SFOAE generation near the peak region is deemphasized compared to generation in the tail region of the traveling wave. A comparison was made between the effect of low-frequency biasing on both SFOAEs and a physiologic measure that arises from the peak region of the traveling wave—the compound action potential (CAP). SFOAE biasing was measured as the amplitude of spectral sidebands from varying bias tone levels. CAP biasing was measured as the suppression of CAP amplitude from varying bias tone levels. Measures of biasing effects were made throughout the cochlea. Results from cats show that the level of bias tone needed for maximum SFOAE sidebands and for 50% CAP reduction increased as probe frequency increased. Results from guinea pigs show an irregular bias effect as a function of probe frequency. In both species, there was a strong and positive relationship between the bias level needed for maximum SFOAE sidebands and for 50% CAP suppression. This relationship is consistent with the hypothesis that the majority of SFOAE is generated near the peak region of the traveling wave.
Literatur
Zurück zum Zitat Bentsen T, Harte JM, Dau T (2011) Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions. J Acoust Soc Am 129:3797–3807PubMedCrossRef Bentsen T, Harte JM, Dau T (2011) Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions. J Acoust Soc Am 129:3797–3807PubMedCrossRef
Zurück zum Zitat Bian L, Watts KL (2008) Effects of low-frequency biasing on spontaneous otoacoustic emissions: amplitude modulation. J Acoust Soc Am 123:887–898PubMedCrossRef Bian L, Watts KL (2008) Effects of low-frequency biasing on spontaneous otoacoustic emissions: amplitude modulation. J Acoust Soc Am 123:887–898PubMedCrossRef
Zurück zum Zitat Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939PubMedCrossRef Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939PubMedCrossRef
Zurück zum Zitat Brown DJ, Hartsock JJ, Gill RM, Fitzgerald HE, Salt AN (2009) Estimating the operating point of the cochlear transducer using low-frequency biased distortion products. J Acoust Soc Am 125:2129–2145PubMedCrossRef Brown DJ, Hartsock JJ, Gill RM, Fitzgerald HE, Salt AN (2009) Estimating the operating point of the cochlear transducer using low-frequency biased distortion products. J Acoust Soc Am 125:2129–2145PubMedCrossRef
Zurück zum Zitat Cai Y, Geisler CD (1996) Suppression in auditory-nerve fibers of cats using low-side suppressors. III. Model results. Hear Res 96:126–140PubMedCrossRef Cai Y, Geisler CD (1996) Suppression in auditory-nerve fibers of cats using low-side suppressors. III. Model results. Hear Res 96:126–140PubMedCrossRef
Zurück zum Zitat Cheatham MA, Naik K, Dallos P (2010) Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 12:113–125PubMed Cheatham MA, Naik K, Dallos P (2010) Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 12:113–125PubMed
Zurück zum Zitat Chertoff ME, Yi X, Lichtenhan JT (2003) Influence of hearing sensitivity on mechano-electric transduction. J Acoust Soc Am 114:3251–3263PubMedCrossRef Chertoff ME, Yi X, Lichtenhan JT (2003) Influence of hearing sensitivity on mechano-electric transduction. J Acoust Soc Am 114:3251–3263PubMedCrossRef
Zurück zum Zitat Choi Y-S, Lee S-Y, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669PubMedCrossRef Choi Y-S, Lee S-Y, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669PubMedCrossRef
Zurück zum Zitat Cody AR, Robertson D, Bredberg G, Johnston BM (1980) Electrophysiological and morphological changes in the guinea pig cochlea following mechanical trauma to the organ of Corti. Acta Otolaryngol 89:440–452PubMedCrossRef Cody AR, Robertson D, Bredberg G, Johnston BM (1980) Electrophysiological and morphological changes in the guinea pig cochlea following mechanical trauma to the organ of Corti. Acta Otolaryngol 89:440–452PubMedCrossRef
Zurück zum Zitat Dolan TG, Mills JH, Schmiedt RA (1985) A comparison of brainstem, whole-nerve AP and single-fiber tuning curves in gerbil: normative data. Hear Res 17:259–266PubMedCrossRef Dolan TG, Mills JH, Schmiedt RA (1985) A comparison of brainstem, whole-nerve AP and single-fiber tuning curves in gerbil: normative data. Hear Res 17:259–266PubMedCrossRef
Zurück zum Zitat Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–56PubMedCrossRef Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–56PubMedCrossRef
Zurück zum Zitat Géléoc GS, Lennan GW, Richardson GP, Kros CJ (1997) “A quantitative comparison of mechanoelectrical trandsduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci 264(1381):611–621PubMedCrossRef Géléoc GS, Lennan GW, Richardson GP, Kros CJ (1997) “A quantitative comparison of mechanoelectrical trandsduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci 264(1381):611–621PubMedCrossRef
Zurück zum Zitat Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance changes in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411PubMedCrossRef Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance changes in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411PubMedCrossRef
Zurück zum Zitat Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494PubMedCrossRef Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494PubMedCrossRef
Zurück zum Zitat Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions—two tone suppression. In: Brink GVD, Bilsen FA (eds) Psychophysical physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–42CrossRef Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions—two tone suppression. In: Brink GVD, Bilsen FA (eds) Psychophysical physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–42CrossRef
Zurück zum Zitat Kiang NYS (1965) Discharge patterns of single-fibers in the cat’s auditory nerve. In: M.I.T. research monograph no. 35. MIT Press, Cambridge Kiang NYS (1965) Discharge patterns of single-fibers in the cat’s auditory nerve. In: M.I.T. research monograph no. 35. MIT Press, Cambridge
Zurück zum Zitat Klis JFL, Smoorenburg GF (1985) Modulation at the guinea pig round window of summating potentials and compound action potentials by low-frequency sound. Hear Res 20:15–23PubMedCrossRef Klis JFL, Smoorenburg GF (1985) Modulation at the guinea pig round window of summating potentials and compound action potentials by low-frequency sound. Hear Res 20:15–23PubMedCrossRef
Zurück zum Zitat Klis JFL, Smoorenburg GF (1988) Cochlear potentials and their modulation by low-frequency sound in early endolymphatic hydrops. Hear Res 32:175–184PubMedCrossRef Klis JFL, Smoorenburg GF (1988) Cochlear potentials and their modulation by low-frequency sound in early endolymphatic hydrops. Hear Res 32:175–184PubMedCrossRef
Zurück zum Zitat Konrad-Martin D, Keefe DH (2003) Time–frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions. J Acoust Soc Am 114:2021–2043PubMedCrossRef Konrad-Martin D, Keefe DH (2003) Time–frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions. J Acoust Soc Am 114:2021–2043PubMedCrossRef
Zurück zum Zitat Konrad-Martin D, Keefe DH (2005) Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears. J Acoust Soc Am 117:3799–3815PubMedCrossRef Konrad-Martin D, Keefe DH (2005) Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears. J Acoust Soc Am 117:3799–3815PubMedCrossRef
Zurück zum Zitat Liberman MC (1984) Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic frequency shift. Hear Res 16:33–41PubMedCrossRef Liberman MC (1984) Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic frequency shift. Hear Res 16:33–41PubMedCrossRef
Zurück zum Zitat Liberman MC (1990) Effects of chronic de-efferentation on auditory-nerve response. Hear Res 49:209–224PubMedCrossRef Liberman MC (1990) Effects of chronic de-efferentation on auditory-nerve response. Hear Res 49:209–224PubMedCrossRef
Zurück zum Zitat Lukashkin AN, Russell IJ (1998) A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer. J Acoust Soc Am 103:973–980PubMedCrossRef Lukashkin AN, Russell IJ (1998) A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer. J Acoust Soc Am 103:973–980PubMedCrossRef
Zurück zum Zitat Meenderink WF, van der Heijden M (2010) Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves. J Neurophysiol 103:1448–1455PubMedCrossRef Meenderink WF, van der Heijden M (2010) Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves. J Neurophysiol 103:1448–1455PubMedCrossRef
Zurück zum Zitat Moleti A, Sisto R (2003) Objective estimates of cochlear tuning by otoacoustic emission analysis. J Acoust Soc Am 113:423–429PubMedCrossRef Moleti A, Sisto R (2003) Objective estimates of cochlear tuning by otoacoustic emission analysis. J Acoust Soc Am 113:423–429PubMedCrossRef
Zurück zum Zitat Moleti A, Sisto R (2008) Comparison between otoacoustic and auditory brainstem response latency supports slow backward propagation of otoacoustic emissions. J Acoust Soc Am 123:1495–1503PubMedCrossRef Moleti A, Sisto R (2008) Comparison between otoacoustic and auditory brainstem response latency supports slow backward propagation of otoacoustic emissions. J Acoust Soc Am 123:1495–1503PubMedCrossRef
Zurück zum Zitat Moleti A, Sisto R, Tognola G, Parazzini M, Ravazzani P, Grandori F (2005) Otoacoustic emission latency, cochlear tuning, and hearing functionality in neonates. J Acoust Soc Am 118:1576–1584PubMedCrossRef Moleti A, Sisto R, Tognola G, Parazzini M, Ravazzani P, Grandori F (2005) Otoacoustic emission latency, cochlear tuning, and hearing functionality in neonates. J Acoust Soc Am 118:1576–1584PubMedCrossRef
Zurück zum Zitat Patuzzi RB, Moleirinho A (1998) Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea. Hear Res 125:1–16PubMedCrossRef Patuzzi RB, Moleirinho A (1998) Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea. Hear Res 125:1–16PubMedCrossRef
Zurück zum Zitat Patuzzi RB, Yates GK, Johnstone BM (1989) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72PubMedCrossRef Patuzzi RB, Yates GK, Johnstone BM (1989) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72PubMedCrossRef
Zurück zum Zitat Ruggero MA, Temchin AN (2005) Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci USA 102(51):18614–18619PubMedCrossRef Ruggero MA, Temchin AN (2005) Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci USA 102(51):18614–18619PubMedCrossRef
Zurück zum Zitat Ruggero MA, Temchin AN (2007) Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods. J Assoc Res Otolaryngol 8:153–166PubMedCrossRef Ruggero MA, Temchin AN (2007) Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods. J Assoc Res Otolaryngol 8:153–166PubMedCrossRef
Zurück zum Zitat Salt AN, Brown DJ, Hartsock JJ, Plontke SK (2009) Displacement of the organ of Corti by gel injections into the cochlear apex. Hear Res 250:63–75PubMedCrossRef Salt AN, Brown DJ, Hartsock JJ, Plontke SK (2009) Displacement of the organ of Corti by gel injections into the cochlear apex. Hear Res 250:63–75PubMedCrossRef
Zurück zum Zitat Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanisms in human ears. J Acoust Soc Am 120:901–914PubMedCrossRef Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanisms in human ears. J Acoust Soc Am 120:901–914PubMedCrossRef
Zurück zum Zitat Sellick PM, Patuzzi R, Johnstone BM (1982) Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound. Hear Res 7:199–221PubMedCrossRef Sellick PM, Patuzzi R, Johnstone BM (1982) Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound. Hear Res 7:199–221PubMedCrossRef
Zurück zum Zitat Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262PubMedCrossRef Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262PubMedCrossRef
Zurück zum Zitat Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772PubMedCrossRef Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772PubMedCrossRef
Zurück zum Zitat Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci USA 99:3318–3323PubMedCrossRef Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci USA 99:3318–3323PubMedCrossRef
Zurück zum Zitat Shera CA, Tubis A, Talmadge CL, Guinan JJ (2004) The dual effect of ‘suppressor’ tones on stimulus-frequency otoacoustic emissions. Assoc Res Otolaryngol Abstr 27:538 Shera CA, Tubis A, Talmadge CL, Guinan JJ (2004) The dual effect of ‘suppressor’ tones on stimulus-frequency otoacoustic emissions. Assoc Res Otolaryngol Abstr 27:538
Zurück zum Zitat Shera CA, Tubis A, Talmadge CL (2008) Testing coherent reflection in chinchilla: auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am 124:381–395PubMedCrossRef Shera CA, Tubis A, Talmadge CL (2008) Testing coherent reflection in chinchilla: auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am 124:381–395PubMedCrossRef
Zurück zum Zitat Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365PubMedCrossRef Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365PubMedCrossRef
Zurück zum Zitat Siegel JH, Temchin AN, Ruggero MA (2003) Empirical estimates of the spatial origin of stimulus-frequency otoacoustic emissions. Assoc Res Otolaryngol Abstr 26:679 Siegel JH, Temchin AN, Ruggero MA (2003) Empirical estimates of the spatial origin of stimulus-frequency otoacoustic emissions. Assoc Res Otolaryngol Abstr 26:679
Zurück zum Zitat Siegel JH, Cerka AJ, Temchin AN, Ruggero MA (2004) Similar two-tone suppression patterns in SFOAEs and the cochlear microphonics indicate comparable spatial summation of underlying generators. Assoc Res Otolaryngol Abstr 27:539 Siegel JH, Cerka AJ, Temchin AN, Ruggero MA (2004) Similar two-tone suppression patterns in SFOAEs and the cochlear microphonics indicate comparable spatial summation of underlying generators. Assoc Res Otolaryngol Abstr 27:539
Zurück zum Zitat Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443PubMedCrossRef Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443PubMedCrossRef
Zurück zum Zitat Sirjani DB, Salt AN, Gill RM, Hale SA (2004) The influence of transducer operating point on distortion generation in the cochlea. J Acoust Soc Am 115:1219–1229PubMedCrossRef Sirjani DB, Salt AN, Gill RM, Hale SA (2004) The influence of transducer operating point on distortion generation in the cochlea. J Acoust Soc Am 115:1219–1229PubMedCrossRef
Zurück zum Zitat Sisto R, Moleti A (2007) Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels. J Acoust Soc Am 122:2183–2190PubMedCrossRef Sisto R, Moleti A (2007) Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels. J Acoust Soc Am 122:2183–2190PubMedCrossRef
Zurück zum Zitat Weiss TF, Leong R (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage. Hear Res 20:175–195PubMedCrossRef Weiss TF, Leong R (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage. Hear Res 20:175–195PubMedCrossRef
Zurück zum Zitat Zou Y, Zheng J, Ren T, Nuttall A (2006) Cochlear transducer operating point adaption. J Acoust Soc Am 119:2232–2241PubMedCrossRef Zou Y, Zheng J, Ren T, Nuttall A (2006) Cochlear transducer operating point adaption. J Acoust Soc Am 119:2232–2241PubMedCrossRef
Zurück zum Zitat Zweig, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047PubMedCrossRef Zweig, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047PubMedCrossRef
Metadaten
Titel
Effects of Low-Frequency Biasing on Otoacoustic and Neural Measures Suggest that Stimulus-Frequency Otoacoustic Emissions Originate Near the Peak Region of the Traveling Wave
verfasst von
Jeffery T. Lichtenhan
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2012
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-011-0296-x

Weitere Artikel der Ausgabe 1/2012

Journal of the Association for Research in Otolaryngology 1/2012 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.