Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 2/2014

01.04.2014 | Research Article

Modeling the Time-Varying and Level-Dependent Effects of the Medial Olivocochlear Reflex in Auditory Nerve Responses

verfasst von: Christopher J. Smalt, Michael G. Heinz, Elizabeth A. Strickland

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noisy environments. This advantage can be attributed to a feedback mechanism that suppresses auditory nerve (AN) firing in continuous background noise, resulting in increased sensitivity to a tone or speech. MOC neurons synapse on outer hair cells (OHCs), and their activity effectively reduces cochlear gain. The computational model developed in this study implements the time-varying, characteristic frequency (CF) and level-dependent effects of the MOCR within the framework of a well-established model for normal and hearing-impaired AN responses. A second-order linear system was used to model the time-course of the MOCR using physiological data in humans. The stimulus-level-dependent parameters of the efferent pathway were estimated by fitting AN sensitivity derived from responses in decerebrate cats using a tone-in-noise paradigm. The resulting model uses a binaural, time-varying, CF-dependent, level-dependent OHC gain reduction for both ipsilateral and contralateral stimuli that improves detection of a tone in noise, similarly to recorded AN responses. The MOCR may be important for speech recognition in continuous background noise as well as for protection from acoustic trauma. Further study of this model and its efferent feedback loop may improve our understanding of the effects of sensorineural hearing loss in noisy situations, a condition in which hearing aids currently struggle to restore normal speech perception.
Literatur
Zurück zum Zitat Backus BC, Guinan JJ Jr (2006) Time-course of the human medial olivocochlear reflex. J Acoust Soc Am 119:2889–2904PubMedCrossRef Backus BC, Guinan JJ Jr (2006) Time-course of the human medial olivocochlear reflex. J Acoust Soc Am 119:2889–2904PubMedCrossRef
Zurück zum Zitat Brown GJ, Ferry RT, Meddis R (2010) A computer model of auditory efferent suppression: implications for the recognition of speech in noise. J Acoust Soc Am 127:943–954PubMedCrossRef Brown GJ, Ferry RT, Meddis R (2010) A computer model of auditory efferent suppression: implications for the recognition of speech in noise. J Acoust Soc Am 127:943–954PubMedCrossRef
Zurück zum Zitat Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417PubMedCrossRef Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417PubMedCrossRef
Zurück zum Zitat Chintanpalli A, Jennings SG, Heinz MG, Strickland EA (2012) Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise. J Assoc Res Otolaryngol 13:219–235PubMedCentralPubMedCrossRef Chintanpalli A, Jennings SG, Heinz MG, Strickland EA (2012) Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise. J Assoc Res Otolaryngol 13:219–235PubMedCentralPubMedCrossRef
Zurück zum Zitat Clark NR, Brown GJ, Jürgens T, Meddis R (2012) A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise. J Acoust Soc Am 132:1535–1541PubMedCrossRef Clark NR, Brown GJ, Jürgens T, Meddis R (2012) A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise. J Acoust Soc Am 132:1535–1541PubMedCrossRef
Zurück zum Zitat Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689PubMedCrossRef Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689PubMedCrossRef
Zurück zum Zitat Delgutte B (1987) Peripheral auditory processing of speech information: implications from a physiological study of intensity discrimination. In: The psychophysics of speech perception. Springer, Berlin, pp 333–353 Delgutte B (1987) Peripheral auditory processing of speech information: implications from a physiological study of intensity discrimination. In: The psychophysics of speech perception. Springer, Berlin, pp 333–353
Zurück zum Zitat Ferry RT, Meddis R (2007) A computer model of medial efferent suppression in the mammalian auditory system. J Acoust Soc Am 122:3519–3526PubMedCrossRef Ferry RT, Meddis R (2007) A computer model of medial efferent suppression in the mammalian auditory system. J Acoust Soc Am 122:3519–3526PubMedCrossRef
Zurück zum Zitat Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194PubMedCrossRef Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194PubMedCrossRef
Zurück zum Zitat Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York
Zurück zum Zitat Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607PubMedCrossRef Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607PubMedCrossRef
Zurück zum Zitat Guinan JJ Jr, Gifford ML (1988) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. Hear Res 33:97–113PubMedCrossRef Guinan JJ Jr, Gifford ML (1988) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. Hear Res 33:97–113PubMedCrossRef
Zurück zum Zitat Guinan JJ Jr, Stankovic KM (1996) Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory‐nerve fibers. J Acoust Soc Am 100:1680–1690PubMedCrossRef Guinan JJ Jr, Stankovic KM (1996) Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory‐nerve fibers. J Acoust Soc Am 100:1680–1690PubMedCrossRef
Zurück zum Zitat Heinz MG (2010) Computational modeling of sensorineural hearing loss. In: Computational models of the auditory system. Springer, Berlin, pp 177–202CrossRef Heinz MG (2010) Computational modeling of sensorineural hearing loss. In: Computational models of the auditory system. Springer, Berlin, pp 177–202CrossRef
Zurück zum Zitat Heinz MG, Colburn HS, Carney LH (2002) Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. J Acoust Soc Am 111:996–1011PubMedCrossRef Heinz MG, Colburn HS, Carney LH (2002) Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. J Acoust Soc Am 111:996–1011PubMedCrossRef
Zurück zum Zitat Heinz MG, Zhang X, Bruce IC, Carney LH (2001) Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online 2:91–96CrossRef Heinz MG, Zhang X, Bruce IC, Carney LH (2001) Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online 2:91–96CrossRef
Zurück zum Zitat Jennings SG, Heinz MG, Strickland EA (2011) Evaluating adaptation and olivocochlear efferent feedback as potential explanations of psychophysical overshoot. J Assoc Res Otolaryngol 12:345–360PubMedCentralPubMedCrossRef Jennings SG, Heinz MG, Strickland EA (2011) Evaluating adaptation and olivocochlear efferent feedback as potential explanations of psychophysical overshoot. J Assoc Res Otolaryngol 12:345–360PubMedCentralPubMedCrossRef
Zurück zum Zitat Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549PubMed Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549PubMed
Zurück zum Zitat Liberman M, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2 f1 − f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584 Liberman M, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2 f1 − f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584
Zurück zum Zitat Liberman MC (1978) Auditory‐nerve response from cats raised in a low‐noise chamber. J Acoust Soc Am 63:442–455PubMedCrossRef Liberman MC (1978) Auditory‐nerve response from cats raised in a low‐noise chamber. J Acoust Soc Am 63:442–455PubMedCrossRef
Zurück zum Zitat Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36PubMedCrossRef Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36PubMedCrossRef
Zurück zum Zitat Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460PubMedCrossRef Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460PubMedCrossRef
Zurück zum Zitat Lilaonitkul W, Guinan JJ Jr (2009) Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths. J Assoc Res Otolaryngol 10:459–470 Lilaonitkul W, Guinan JJ Jr (2009) Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths. J Assoc Res Otolaryngol 10:459–470
Zurück zum Zitat Lilaonitkul W, Guinan JJ Jr (2012) Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. J Neurophysiol 107:1598–1611PubMedCentralPubMedCrossRef Lilaonitkul W, Guinan JJ Jr (2012) Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. J Neurophysiol 107:1598–1611PubMedCentralPubMedCrossRef
Zurück zum Zitat Lopez-Poveda EA (2005) Spectral processing by the peripheral auditory system: facts and models. Int Rev Neurobiol 70:7–48PubMedCrossRef Lopez-Poveda EA (2005) Spectral processing by the peripheral auditory system: facts and models. Int Rev Neurobiol 70:7–48PubMedCrossRef
Zurück zum Zitat May BJ, Sachs MB (1992) Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats. J Neurophysiol 68:1589–1602PubMed May BJ, Sachs MB (1992) Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats. J Neurophysiol 68:1589–1602PubMed
Zurück zum Zitat Meddis R (2006) Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. J Acoust Soc Am 119:406–417PubMedCrossRef Meddis R (2006) Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. J Acoust Soc Am 119:406–417PubMedCrossRef
Zurück zum Zitat Messing DP, Delhorne L, Bruckert E, Braida LD, Ghitza O (2009) A non-linear efferent-inspired model of the auditory system; matching human confusions in stationary noise. Speech Comm 51:668–683CrossRef Messing DP, Delhorne L, Bruckert E, Braida LD, Ghitza O (2009) A non-linear efferent-inspired model of the auditory system; matching human confusions in stationary noise. Speech Comm 51:668–683CrossRef
Zurück zum Zitat Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332PubMed Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332PubMed
Zurück zum Zitat Puria S, Guinan JJ Jr, Liberman MC (1996) Olivocochlear reflex assays: effects of contralateral sound on compound action potentials versus ear‐canal distortion products. J Acoust Soc Am 99:500–507PubMedCrossRef Puria S, Guinan JJ Jr, Liberman MC (1996) Olivocochlear reflex assays: effects of contralateral sound on compound action potentials versus ear‐canal distortion products. J Acoust Soc Am 99:500–507PubMedCrossRef
Zurück zum Zitat Roverud E, Strickland EA (2010) The time course of cochlear gain reduction measured using a more efficient psychophysical technique. J Acoust Soc Am 128:1203–1214PubMedCentralPubMedCrossRef Roverud E, Strickland EA (2010) The time course of cochlear gain reduction measured using a more efficient psychophysical technique. J Acoust Soc Am 128:1203–1214PubMedCentralPubMedCrossRef
Zurück zum Zitat Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats tone-burst stimuli. J Acoust Soc Am 56:1835–1847PubMedCrossRef Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats tone-burst stimuli. J Acoust Soc Am 56:1835–1847PubMedCrossRef
Zurück zum Zitat Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798PubMedCrossRef Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798PubMedCrossRef
Zurück zum Zitat Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007–2020PubMedCrossRef Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007–2020PubMedCrossRef
Zurück zum Zitat Tan Q, Carney LH (2005) Encoding of vowel-like sounds in the auditory nerve: model predictions of discrimination performance. J Acoust Soc Am 117:1210–1222PubMedCentralPubMedCrossRef Tan Q, Carney LH (2005) Encoding of vowel-like sounds in the auditory nerve: model predictions of discrimination performance. J Acoust Soc Am 117:1210–1222PubMedCentralPubMedCrossRef
Zurück zum Zitat Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021PubMed Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021PubMed
Zurück zum Zitat Young ED, Barta PE (1986) Rate responses of auditory nerve fibers to tones in noise near masked threshold. J Acoust Soc Am 79:426–442PubMedCrossRef Young ED, Barta PE (1986) Rate responses of auditory nerve fibers to tones in noise near masked threshold. J Acoust Soc Am 79:426–442PubMedCrossRef
Zurück zum Zitat Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670PubMedCrossRef Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670PubMedCrossRef
Zurück zum Zitat Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466PubMedCrossRef Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466PubMedCrossRef
Zurück zum Zitat Zilany MS, Bruce IC (2007) Representation of the vowel /ε/ in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122:402–417PubMedCrossRef Zilany MS, Bruce IC (2007) Representation of the vowel /ε/ in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122:402–417PubMedCrossRef
Zurück zum Zitat Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412PubMedCentralPubMedCrossRef Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412PubMedCentralPubMedCrossRef
Metadaten
Titel
Modeling the Time-Varying and Level-Dependent Effects of the Medial Olivocochlear Reflex in Auditory Nerve Responses
verfasst von
Christopher J. Smalt
Michael G. Heinz
Elizabeth A. Strickland
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 2/2014
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-013-0430-z

Weitere Artikel der Ausgabe 2/2014

Journal of the Association for Research in Otolaryngology 2/2014 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.