Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 4/2018

10.05.2018 | Research Article

Tone-Evoked Acoustic Change Complex (ACC) Recorded in a Sedated Animal Model

verfasst von: Alessandro Presacco, John C. Middlebrooks

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

The acoustic change complex (ACC) is a scalp-recorded cortical evoked potential complex generated in response to changes (e.g., frequency, amplitude) in an auditory stimulus. The ACC has been well studied in humans, but to our knowledge, no animal model has been evaluated. In particular, it was not known whether the ACC could be recorded under the conditions of sedation that likely would be necessary for recordings from animals. For that reason, we tested the feasibility of recording ACC from sedated cats in response to changes of frequency and amplitude of pure-tone stimuli. Cats were sedated with ketamine and acepromazine, and subdermal needle electrodes were used to record electroencephalographic (EEG) activity. Tones were presented from a small loudspeaker located near the right ear. Continuous tones alternated at 500-ms intervals between two frequencies or two levels. Neurometric functions were created by recording neural response amplitudes while systematically varying the magnitude of steps in frequency centered in octave frequency around 2, 4, 8, and 16 kHz, all at 75 dB SPL, or in decibel level around 75 dB SPL tested at 4 and 8 kHz. The ACC could be recorded readily under this ketamine/azepromazine sedation. In contrast, ACC could not be recorded reliably under any level of isoflurane anesthesia that was tested. The minimum frequency (expressed as Weber fractions (df/f)) or level steps (expressed in dB) needed to elicit ACC fell in the range of previous thresholds reported in animal psychophysical tests of discrimination. The success in recording ACC in sedated animals suggests that the ACC will be a useful tool for evaluation of other aspects of auditory acuity in normal hearing and, presumably, in electrical cochlear stimulation, especially for novel stimulation modes that are not yet feasible in humans.
Literatur
Zurück zum Zitat Arlinger SD, Jerlvall LB (1979) Results of psychoacoustic and cortical evoked potential experiments using frequency and amplitude modulated stimuli. Scand Audiol Suppl: 229–239 Arlinger SD, Jerlvall LB (1979) Results of psychoacoustic and cortical evoked potential experiments using frequency and amplitude modulated stimuli. Scand Audiol Suppl: 229–239
Zurück zum Zitat Arlinger SD, Jerlvall LB, Ahren T, Holmgren EC (1976) Slow evoked cortical responses to linear frequency ramps of a continuous pure tone. Acta Physiol Scand 98:412–424CrossRef Arlinger SD, Jerlvall LB, Ahren T, Holmgren EC (1976) Slow evoked cortical responses to linear frequency ramps of a continuous pure tone. Acta Physiol Scand 98:412–424CrossRef
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
Zurück zum Zitat Brown CJ, Etler C, He S, O’Brien S, Erenberg S, Kim J-R, Dhuldhoya AN, Abbas PJ (2008) The electrically evoked auditory change complex: preliminary results from nucleus cochlear implant users. Ear Hear 29:704–717CrossRef Brown CJ, Etler C, He S, O’Brien S, Erenberg S, Kim J-R, Dhuldhoya AN, Abbas PJ (2008) The electrically evoked auditory change complex: preliminary results from nucleus cochlear implant users. Ear Hear 29:704–717CrossRef
Zurück zum Zitat Brown M, Irvine DR, Park VN (2004) Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cereb Cortex 14:952–965CrossRef Brown M, Irvine DR, Park VN (2004) Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cereb Cortex 14:952–965CrossRef
Zurück zum Zitat Butler RA, Diamond IT, Neff WD (1957) Role of auditory cortex in discrimination of changes in frequency. J Neurophysiol 20:108–120CrossRef Butler RA, Diamond IT, Neff WD (1957) Role of auditory cortex in discrimination of changes in frequency. J Neurophysiol 20:108–120CrossRef
Zurück zum Zitat Chen KH, Small SA (2015) Elicitation of the acoustic change complex to long-duration speech stimuli in four-month-old infants. Int J Otolaryngol 2015:562030CrossRef Chen KH, Small SA (2015) Elicitation of the acoustic change complex to long-duration speech stimuli in four-month-old infants. Int J Otolaryngol 2015:562030CrossRef
Zurück zum Zitat Dimitrijevic A, Michalewski HJ, Zeng F-G, Pratt H, Starr A (2008) Frequency changes in a continuous tone: auditory cortical potentials. Clin Neurophysiol 119:2111–2124CrossRef Dimitrijevic A, Michalewski HJ, Zeng F-G, Pratt H, Starr A (2008) Frequency changes in a continuous tone: auditory cortical potentials. Clin Neurophysiol 119:2111–2124CrossRef
Zurück zum Zitat Dimitrijevic A, Lolli B, Michalewski HJ, Pratt H, Zeng F-G, Starr A (2009) Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes. Clin Neurophysiol 120:374–383CrossRef Dimitrijevic A, Lolli B, Michalewski HJ, Pratt H, Zeng F-G, Starr A (2009) Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes. Clin Neurophysiol 120:374–383CrossRef
Zurück zum Zitat Dimitrijevic A, Starr A, Bhatt S, Michalewski HJ, Zeng FG, Pratt H (2011) Auditory cortical N100 in pre- and post-synaptic auditory neuropathy to frequency or intensity changes of continuous tones. Clin Neurophysiol 122:594–604CrossRef Dimitrijevic A, Starr A, Bhatt S, Michalewski HJ, Zeng FG, Pratt H (2011) Auditory cortical N100 in pre- and post-synaptic auditory neuropathy to frequency or intensity changes of continuous tones. Clin Neurophysiol 122:594–604CrossRef
Zurück zum Zitat Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253:390–395CrossRef Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253:390–395CrossRef
Zurück zum Zitat Elliott DN, McGee TM (1965) Effect of cochlear lesions upon audiograms and intensity discrimination in cats. Ann Otol Rhinol Laryngol 74:386–408CrossRef Elliott DN, McGee TM (1965) Effect of cochlear lesions upon audiograms and intensity discrimination in cats. Ann Otol Rhinol Laryngol 74:386–408CrossRef
Zurück zum Zitat Elliott DN, Stein L, Harrison MJ (1960) Determination of absolute-intensity thresholds and frequency-difference thresholds in cats. J Acoust Soc Am 32:380–384CrossRef Elliott DN, Stein L, Harrison MJ (1960) Determination of absolute-intensity thresholds and frequency-difference thresholds in cats. J Acoust Soc Am 32:380–384CrossRef
Zurück zum Zitat Green DM, Swets JA (1966) Signal detection theory and psychophysics. John Wiley & Sons, Inc, New York, NY Green DM, Swets JA (1966) Signal detection theory and psychophysics. John Wiley & Sons, Inc, New York, NY
Zurück zum Zitat Haenggi M, Ypparila H, Takala J, Korhonen I, Luginbuhl M, Petersen-Felix S, Jakob SM (2004) Measuring depth of sedation with auditory evoked potentials during controlled infusion of propofol and remifentanil in healthy volunteers. Anesth Analg 99:1728–1736CrossRef Haenggi M, Ypparila H, Takala J, Korhonen I, Luginbuhl M, Petersen-Felix S, Jakob SM (2004) Measuring depth of sedation with auditory evoked potentials during controlled infusion of propofol and remifentanil in healthy volunteers. Anesth Analg 99:1728–1736CrossRef
Zurück zum Zitat Hall JL, Goldstein Jr MH (1968) Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J Acoust Soc Am 43:456–461CrossRef Hall JL, Goldstein Jr MH (1968) Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J Acoust Soc Am 43:456–461CrossRef
Zurück zum Zitat Han JH, Dimitrijevic A (2015) Acoustic change responses to amplitude modulation: a method to quantify cortical temporal processing and hemispheric asymmetry. Front Neurosci 9:38CrossRef Han JH, Dimitrijevic A (2015) Acoustic change responses to amplitude modulation: a method to quantify cortical temporal processing and hemispheric asymmetry. Front Neurosci 9:38CrossRef
Zurück zum Zitat Harris KC, Mills JH, Dubno JR (2007) Electrophysiologic correlates of intensity discrimination in cortical evoked potentials of younger and older adults. Hear Res 228:58–68CrossRef Harris KC, Mills JH, Dubno JR (2007) Electrophysiologic correlates of intensity discrimination in cortical evoked potentials of younger and older adults. Hear Res 228:58–68CrossRef
Zurück zum Zitat He S, Grose JH, Buchman CA (2012) Auditory discrimination: the relationship between psychophysical and electrophysiological measures. Int J Audiol 51:771–782CrossRef He S, Grose JH, Buchman CA (2012) Auditory discrimination: the relationship between psychophysical and electrophysiological measures. Int J Audiol 51:771–782CrossRef
Zurück zum Zitat Heffner RS, Heffner HE (1985) Hearing range of the domestic cat. Hear Res 19:85–88CrossRef Heffner RS, Heffner HE (1985) Hearing range of the domestic cat. Hear Res 19:85–88CrossRef
Zurück zum Zitat Hienz RD, Sachs MB, Aleszczyk CM (1993) Frequency discrimination in noise: comparison of cat performances with auditory-nerve models. J Acoust Soc Am 93:462–469CrossRef Hienz RD, Sachs MB, Aleszczyk CM (1993) Frequency discrimination in noise: comparison of cat performances with auditory-nerve models. J Acoust Soc Am 93:462–469CrossRef
Zurück zum Zitat Hine J, Debener S (2007) Late auditory evoked potentials asymmetry revisited. Clin Neurophysiol 118:1274–1285CrossRef Hine J, Debener S (2007) Late auditory evoked potentials asymmetry revisited. Clin Neurophysiol 118:1274–1285CrossRef
Zurück zum Zitat Igarashi M, Cranford JL, Allen EA, Alford BR (1979a) Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. V. Pure-tone intensity discrimination. Acta Otolaryngol 87:429–433CrossRef Igarashi M, Cranford JL, Allen EA, Alford BR (1979a) Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. V. Pure-tone intensity discrimination. Acta Otolaryngol 87:429–433CrossRef
Zurück zum Zitat Igarashi M, Cranford JL, Nakai Y, Alford BR (1979b) Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. IV. Study on pure-tone frequency discrimination. Acta Otolaryngol 87:79–83CrossRef Igarashi M, Cranford JL, Nakai Y, Alford BR (1979b) Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. IV. Study on pure-tone frequency discrimination. Acta Otolaryngol 87:79–83CrossRef
Zurück zum Zitat Kohn M, Lifshitz K, Litchfield D (1978) Averaged evoked potentials and frequency modulation. Electroencephalogr Clin Neurophysiol 45:236–243CrossRef Kohn M, Lifshitz K, Litchfield D (1978) Averaged evoked potentials and frequency modulation. Electroencephalogr Clin Neurophysiol 45:236–243CrossRef
Zurück zum Zitat Macmillan NA, Kaplan HL (1985) Detection theory analysis of group data: estimating sensitivity from average hit and false-alarm rates. Psychol Bull 98:185–199.CrossRef Macmillan NA, Kaplan HL (1985) Detection theory analysis of group data: estimating sensitivity from average hit and false-alarm rates. Psychol Bull 98:185–199.CrossRef
Zurück zum Zitat Macmillan NA, Creelman CD (2005) Detection theory: a user’s guide, 2nd edn. Lawrence Erlbaum Associates, Mahwah, New Jersey Macmillan NA, Creelman CD (2005) Detection theory: a user’s guide, 2nd edn. Lawrence Erlbaum Associates, Mahwah, New Jersey
Zurück zum Zitat Martin BA (2007) Can the acoustic change complex be recorded in an individual with a cochlear implant? Separating neural responses from cochlear implant artifact. J Am Acad Audiol 18:126–140CrossRef Martin BA (2007) Can the acoustic change complex be recorded in an individual with a cochlear implant? Separating neural responses from cochlear implant artifact. J Am Acad Audiol 18:126–140CrossRef
Zurück zum Zitat Martin BA, Boothroyd A (1999) Cortical, auditory, event-related potentials in response to periodic and aperiodic stimuli with the same spectral envelope. Ear Hear 20:33–44CrossRef Martin BA, Boothroyd A (1999) Cortical, auditory, event-related potentials in response to periodic and aperiodic stimuli with the same spectral envelope. Ear Hear 20:33–44CrossRef
Zurück zum Zitat Martin BA, Boothroyd A (2000) Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude. J Acoust Soc Am 107:2155–2161CrossRef Martin BA, Boothroyd A (2000) Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude. J Acoust Soc Am 107:2155–2161CrossRef
Zurück zum Zitat Martin BA, Boothroyd A, Ali D, Leach-Berth T (2010) Stimulus presentation strategies for eliciting the acoustic change complex: increasing efficiency. Ear Hear 31:356–366CrossRef Martin BA, Boothroyd A, Ali D, Leach-Berth T (2010) Stimulus presentation strategies for eliciting the acoustic change complex: increasing efficiency. Ear Hear 31:356–366CrossRef
Zurück zum Zitat Martinez AS, Eisenberg LS, Boothroyd A (2013) The acoustic change complex in young children with hearing loss: a preliminary study. Semin Hear 34:278–287CrossRef Martinez AS, Eisenberg LS, Boothroyd A (2013) The acoustic change complex in young children with hearing loss: a preliminary study. Semin Hear 34:278–287CrossRef
Zurück zum Zitat Middlebrooks JC, Snyder RL (2007) Auditory prosthesis with a penetrating nerve array. J Assoc Res Otolaryngol 8:258–279CrossRef Middlebrooks JC, Snyder RL (2007) Auditory prosthesis with a penetrating nerve array. J Assoc Res Otolaryngol 8:258–279CrossRef
Zurück zum Zitat Middlebrooks JC, Snyder RL (2008) Intraneural stimulation for auditory prosthesis: modiolar trunk and intracranial stimulation sites. Hear Res 242:52–63CrossRef Middlebrooks JC, Snyder RL (2008) Intraneural stimulation for auditory prosthesis: modiolar trunk and intracranial stimulation sites. Hear Res 242:52–63CrossRef
Zurück zum Zitat Middlebrooks JC, Snyder RL (2010) Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J Neurosci 30:1937–1946CrossRef Middlebrooks JC, Snyder RL (2010) Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J Neurosci 30:1937–1946CrossRef
Zurück zum Zitat Moller AR, Jannetta PJ, Sekhar LN (1988) Contributions from the auditory nerve to the brain-stem auditory evoked potentials (BAEPs): results of intracranial recording in man. Electroencephalogr Clin Neurophysiol 71:198–211CrossRef Moller AR, Jannetta PJ, Sekhar LN (1988) Contributions from the auditory nerve to the brain-stem auditory evoked potentials (BAEPs): results of intracranial recording in man. Electroencephalogr Clin Neurophysiol 71:198–211CrossRef
Zurück zum Zitat Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRef Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRef
Zurück zum Zitat Neff WD, Hind JE (1955) Auditory thresholds of the cat. J Acoust Soc Am 27:480–483CrossRef Neff WD, Hind JE (1955) Auditory thresholds of the cat. J Acoust Soc Am 27:480–483CrossRef
Zurück zum Zitat Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223.CrossRef Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223.CrossRef
Zurück zum Zitat Pantev C, Lutkenhoner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation. Audiology 25:54–61CrossRef Pantev C, Lutkenhoner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation. Audiology 25:54–61CrossRef
Zurück zum Zitat Ross B, Herdman AT, Pantev C (2005) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex 15:2029–2039CrossRef Ross B, Herdman AT, Pantev C (2005) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex 15:2029–2039CrossRef
Zurück zum Zitat Savoia G, Esposito C, Belfiore F, Amantea B, Cuocolo R (1988) Propofol infusion and auditory evoked potentials. Anaesthesia 43(Suppl):46–49CrossRef Savoia G, Esposito C, Belfiore F, Amantea B, Cuocolo R (1988) Propofol infusion and auditory evoked potentials. Anaesthesia 43(Suppl):46–49CrossRef
Zurück zum Zitat Scheperle RA, Abbas PJ (2015) Peripheral and central contributions to cortical responses in cochlear implant users. Ear Hear 36:430–440CrossRef Scheperle RA, Abbas PJ (2015) Peripheral and central contributions to cortical responses in cochlear implant users. Ear Hear 36:430–440CrossRef
Zurück zum Zitat Sokolovski A (1973) Normal threshold of hearing for cat for free-field listening. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 203:232–240CrossRef Sokolovski A (1973) Normal threshold of hearing for cat for free-field listening. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 203:232–240CrossRef
Zurück zum Zitat Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78CrossRef Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78CrossRef
Zurück zum Zitat Thornton C, Catley DM, Jordan C, Lehane JR, Royston D, Jones JG (1983) Enflurane anaesthesia causes graded changes in the brainstem and early cortical auditory evoked response in man. Br J Anaesth 55:479–486CrossRef Thornton C, Catley DM, Jordan C, Lehane JR, Royston D, Jones JG (1983) Enflurane anaesthesia causes graded changes in the brainstem and early cortical auditory evoked response in man. Br J Anaesth 55:479–486CrossRef
Zurück zum Zitat Tietze G, Afontshenko V (1978) The acoustically evoked potentials in the case of stimulation by frequency modulation (FM) near the hearing threshold, compared with tone burst stimulation. Scand Audiol 7:33–38CrossRef Tietze G, Afontshenko V (1978) The acoustically evoked potentials in the case of stimulation by frequency modulation (FM) near the hearing threshold, compared with tone burst stimulation. Scand Audiol 7:33–38CrossRef
Zurück zum Zitat Yingling CD, Nethercut GE (1983) Evoked responses to frequency shifted tones: tonotopic and contextual determinants. Int J Neurosci 22:107–118CrossRef Yingling CD, Nethercut GE (1983) Evoked responses to frequency shifted tones: tonotopic and contextual determinants. Int J Neurosci 22:107–118CrossRef
Metadaten
Titel
Tone-Evoked Acoustic Change Complex (ACC) Recorded in a Sedated Animal Model
verfasst von
Alessandro Presacco
John C. Middlebrooks
Publikationsdatum
10.05.2018
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 4/2018
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-018-0673-9

Weitere Artikel der Ausgabe 4/2018

Journal of the Association for Research in Otolaryngology 4/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.