Skip to main content

Advertisement

Log in

An Introductory Review of Cell Mechanobiology

  • Review article
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mechanical loads induce changes in the structure, composition, and function of living tissues. Cells in tissues are responsible for these changes, which cause physiological or pathological alterations in the extracellular matrix (ECM). This article provides an introductory review of the mechanobiology of load-sensitive cells in vivo, which include fibroblasts, chondrocytes, osteoblasts, endothelial cells, and smooth muscle cells. Many studies have shown that mechanical loads affect diverse cellular functions, such as cell proliferation, ECM gene and protein expression, and the production of soluble factors. Major cellular components involved in the mechanotransduction mechanisms include the cytoskeleton, integrins, G proteins, receptor tyrosine kinases, mitogen-activated protein kinases, and stretch-activated ion channels. Future research in the area of cell mechanobiology will require novel experimental and theoretical methodologies to determine the type and magnitude of the forces experienced at the cellular and sub-cellular levels and to identify the force sensors/receptors that initiate the cascade of cellular and molecular events

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo AD, Bowser SS, Gerritsen ME, Bizios R (1993) Morphological and proliferative responses of endothelial cells to hydrostatic pressure: role of fibroblast growth factor. J Cell Physiol 157(3):603–614

    Article  PubMed  Google Scholar 

  • Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117(4):1183–1198

    PubMed  Google Scholar 

  • Aigner T, Stove J (2003) Collagens–major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593

    Article  PubMed  Google Scholar 

  • Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4(11):2868–2880

    PubMed  Google Scholar 

  • Alberts B (1989) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Aplin AE, Howe AK, Juliano RL (1999) Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 11(6):737–744

    Article  PubMed  Google Scholar 

  • Archambault J, Tsuzaki M, Herzog W, Banes AJ (2002) Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. J Orthop Res 20(1):36–39

    Article  PubMed  Google Scholar 

  • Asanuma K, Magid, R, Johnson C, Nerem RM, Galis ZS (2003) Uniaxial strain upregulates matrix-degrading enzymes produced by human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 284(5):H1778–1784

    PubMed  Google Scholar 

  • Ashworth JM (1973) Cell differentiation. Chapman and Hall, London

    Google Scholar 

  • Aubin JE, Triffitt JT (2002) Mesenchymal stem cells and osteoblast differentiation. Academic Press, San Diego

    Google Scholar 

  • Aumailley M, Krieg T (1996) Laminins: a family of diverse multifunctional molecules of basement membranes. J Investig Dermatol 106(2):209–214

    Article  PubMed  Google Scholar 

  • Aumailley M, Smyth N (1998) The role of laminins in basement membrane function. J Anat 193(Pt 1):1–21

    Article  PubMed  Google Scholar 

  • Aumailley M, Gayraud B (1998) Structure and biological activity of the extracellular matrix. J Mol Med 76(3,4):253–265

    Article  PubMed  Google Scholar 

  • Bag R, Suleman N, Guntupalli KK (2004) Respiratory failure in interstitial lung disease. Curr Opin Pulm Med 10(5):412–418

    Article  PubMed  Google Scholar 

  • Baggiolini, M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters 307(1):97–101

    Article  PubMed  Google Scholar 

  • Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T (1995) PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech 28(12):1505–1513

    Article  PubMed  Google Scholar 

  • Barkhausen T, van Griensven M, Zeichen J, Bosch U (2003) Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol 55(2–3):153–158

    Article  PubMed  Google Scholar 

  • Berry CC, Shelton JC, Bader DL, Lee DA (2003) Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng 9(4):613–624

    Article  PubMed  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer T (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95 (Pt 4):649–657

    PubMed  Google Scholar 

  • Bishop JE, Butt R, Dawes K, Laurent G (1998) Mechanical load enhances the stimulatory effect of PDGF on pulmonary artery fibroblast procollagen synthesis. Chest 114(Suppl 1):25S

    Google Scholar 

  • Bonassar LJ, Grodzinsky AJ, Srinivasan A, Davila SG (2000) Trippel, S. B.: Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch Biochem Biophys 379(1):57–63

    Article  PubMed  Google Scholar 

  • Bonassar LJ, Grodzinsky AJ, Frank EH, Davila SG, Bhaktav NR, Trippel SB (2001) The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res 19(1):11–17

    Article  PubMed  Google Scholar 

  • Borer JS, Truter SL, Gupta A, Herrold EM, Carter JN, Lee E, Pitlor L (2004) Heart failure in aortic regurgitation: the role of primary fibrosis and its cellular and molecular pathophysiology. Adv Cardiol 41:16–24

    PubMed  Google Scholar 

  • Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200(4):423–428

    Article  PubMed  Google Scholar 

  • Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65(4):663–675

    Article  PubMed  Google Scholar 

  • Breen EC (2000) Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol 88(1):203–209

    PubMed  Google Scholar 

  • Brighton CT, Sennett BJ, Farmer JC, Iannotti JP, Hansen CA, Williams JL, Williamson J (1992) The inositol phosphate pathway as a mediator in the proliferative response of rat calvarial bone cells to cyclical biaxial mechanical strain. J Orthop Res 10(3):385–393

    Article  PubMed  Google Scholar 

  • Brown JC, Timpl R (1995) The collagen superfamily. Int Arch Allerg Immunol 107(4):484–490

    Google Scholar 

  • Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108(Pt 4):1497–1508

    PubMed  Google Scholar 

  • Butt RP, Bishop JE (1997) Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J Mol Cell Cardiol 29(4):1141–1151

    Article  PubMed  Google Scholar 

  • Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65(1):40–51

    Article  PubMed  Google Scholar 

  • Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991) Oncogenes and signal transduction.[erratum appears in Cell 65(5): following 914]. Cell 64(2):281–302

    Article  PubMed  Google Scholar 

  • Canty EG, Kadler KE (2002) Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol Mol Integr Physiol 133(4):979–985

    Article  Google Scholar 

  • Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69(1):116–122

    PubMed  Google Scholar 

  • Chao MV (1992) Growth factor signaling: where is the specificity?. Cell 68(6):995–997

    Article  PubMed  Google Scholar 

  • Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6:275–302

    Article  PubMed  Google Scholar 

  • Chess PR, Toia L, Finkelstein JN (2000) Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells. Am J Physiol Lung Cell Mol Physiol 279(1):L43–51

    PubMed  Google Scholar 

  • Chicurel ME, Chen CS, Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10(2):232–239

    Article  PubMed  Google Scholar 

  • Chiquet M (1999) Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biology 18(5):417–426

    Article  PubMed  Google Scholar 

  • Chiquet-Ehrismann R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200(4):488–499

    Article  PubMed  Google Scholar 

  • Chiquet M, Sarasa-Renedo A, Tunc-Civelek V (2004) Induction of tenascin-C by cyclic tensile strain versus growth factors: distinct contributions by Rho/ROCK and MAPK signaling pathways. Biochim Biophys Acta 1693(3):193–204

    Article  PubMed  Google Scholar 

  • Chowdhury TT, Bader DL, Shelton JC, Lee DA (2003) Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch Biochem Biophys 417(1):105–111

    Article  PubMed  Google Scholar 

  • Clark CB, McKnight NL, Frangos JA (2002) Strain and strain rate activation of G proteins in human endothelial cells. Biochem Biophys Res Commun 299(2):258–262

    Article  PubMed  Google Scholar 

  • Cobb MH, Boulton TG, Robbins DJ (1991) Extracellular signal-regulated kinases: ERKs in progress. Cell Regul 2(12):965–978

    PubMed  Google Scholar 

  • Cobb MH, Robbins DJ, Boulton TG (1991) ERKs, extracellular signal-regulated MAP-2 kinases. Curr Opin Cell Biol 3(6):1025–1032

    Article  PubMed  Google Scholar 

  • Coppolino MG, Dedhar S (2000) Bi-directional signal transduction by integrin receptors. Int J Biochem Cell Biol 32(2):171–188

    Article  PubMed  Google Scholar 

  • Dartsch PC, Hammerle H (1986) Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur J Cell Biol 41(2):339–346

    PubMed  Google Scholar 

  • Dartsch PC, Hammerle H, Betz E (1986) Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta Anat 125(2):108–113

    PubMed  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560

    PubMed  Google Scholar 

  • Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A (2002) Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 20(4):842–848

    Article  PubMed  Google Scholar 

  • Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20(5 Suppl 27):S1–13

    Google Scholar 

  • Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57(5): 344–358

    Article  PubMed  Google Scholar 

  • Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI (2000) Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. FASEB Journal 14(12):1775–1783

    Article  PubMed  Google Scholar 

  • Eckes B, Krieg T (2004) Regulation of connective tissue homeostasis in the skin by mechanical forces. Clin Exp Rheumatol 22(3 Suppl 33):S73–76

    PubMed  Google Scholar 

  • Elder SH, Kimura JH, Soslowsky LJ, Lavagnino M, Goldstein SA (2000) Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res 18(1):78–86

    Article  PubMed  Google Scholar 

  • Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6): 476–482

    Article  PubMed  Google Scholar 

  • Elfervig MK, Minchew JT, Francke E, Tsuzaki M, Banes AJ (2001) IL-1beta sensitizes intervertebral disc annulus cells to fluid-induced shear stress. J Cell Biochem 82(2):290–298

    Article  PubMed  Google Scholar 

  • Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development.[comment]. Cell 80(3):371–378

    Article  PubMed  Google Scholar 

  • Eyre DR (2004) Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res (427 Suppl):S118–122

    Article  Google Scholar 

  • Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 278(51):50940–50948

    Article  PubMed  Google Scholar 

  • Feng Y, Yang JH, Huang H, Kennedy SP, Turi TG, Thompson JF, Libby P, Lee RT (1999) Transcriptional profile of mechanically induced genes in human vascular smooth muscle cells. Circ Res 85(12): 1118–1123

    PubMed  Google Scholar 

  • Fowlkes JL, Enghild JJ, Suzuki K, Nagase H (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem 269(41):25742–25746

    PubMed  Google Scholar 

  • Funa K, Uramoto H (2003) Regulatory mechanisms for the expression and activity of platelet-derived growth factor receptor. Acta Biochim Pol 50(3):647–658

    PubMed  Google Scholar 

  • Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90(3):251–262

    PubMed  Google Scholar 

  • Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Amento E, Libby P (1994) Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75(1):181–189

    PubMed  Google Scholar 

  • Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967–979

    Article  PubMed  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032

    Article  PubMed  Google Scholar 

  • Gloe T, Sohn HY, Meininger GA, Pohl U (2002) Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J Biol Chem 277(26):23453–23458

    Article  PubMed  Google Scholar 

  • Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Ann Rev Biomedical Engineering 2 (2000): 691–713

    Article  Google Scholar 

  • Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92(11):e80–86

    Article  PubMed  Google Scholar 

  • Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79(4):834– 839

    Google Scholar 

  • Gudi SR, Lee AA, Clark CB, Frangos JA (1998) Equibiaxial strain and strain rate stimulate early activation of G proteins in cardiac fibroblasts. Am J Physiol 274(5 Pt 1):C1424–1428

    PubMed  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81(2):685–740

    PubMed  Google Scholar 

  • Hansen CA, Schroering AG, Carey DJ, Robishaw JD (1994) Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. J Cell Biol 126(3):811–819

    Article  PubMed  Google Scholar 

  • Harter LV, Hruska KA, Duncan RL (1995) Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 136(2):528–535

    Article  PubMed  Google Scholar 

  • He Y, Macarak EJ, Korostoff JM, Howard PS (2004) Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect Tissue Res 45(1):28–39

    Article  PubMed  Google Scholar 

  • Hebert CA, Baker JB (1993) Interleukin-8: a review. Cancer Investigation 11(6):743–750

    PubMed  Google Scholar 

  • Holmvall K, Camper L, Johansson S, Kimura JH, Lundgren-Akerlund E (1995) Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res 221(2):496–503

    Article  PubMed  Google Scholar 

  • Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res 33(8):500–508

    Article  PubMed  Google Scholar 

  • Hsieh AH, Tsai CM, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KL (2000) Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18(2):220–227

    Article  PubMed  Google Scholar 

  • Hubmayr RD, Shore SA, Fredberg JJ, Planus E, Panettieri RA Jr, Moller W, Heyder J, Wang N (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Physiol 271(5 Pt 1):C1660–1668

    PubMed  Google Scholar 

  • Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE 2004(249):RE12

    Article  PubMed  Google Scholar 

  • Hulmes DJ (1992) The collagen superfamily–diverse structures and assemblies. Essays Biochem 27:49–67

    PubMed  Google Scholar 

  • Humphrey JD (2001) Stress, strain, and mechanotransduction in cells. J Biomech Eng 123(6):638–641

    Article  PubMed  Google Scholar 

  • Hunter CJ, Imler SM, Malaviya P, Nerem RM, Levenston ME (2002) Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23(4):1249–1259

    Article  PubMed  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25

    Article  PubMed  Google Scholar 

  • Iannone F, Lapadula G (2003) The pathophysiology of osteoarthritis. Aging Clin Exp Res 15(5):364–372

    PubMed  Google Scholar 

  • Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochemical Journal 322(Pt 3):809–814

    PubMed  Google Scholar 

  • Ingber D (1991) Integrins as mechanochemical transducers. Curr Opin Cell Biol 3(5):841–848

    Article  PubMed  MathSciNet  Google Scholar 

  • Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  PubMed  Google Scholar 

  • Ingber DE (1998) Cellular basis of mechanotransduction. Biol Bull 194(3):323–325; discussion 325–327

    PubMed  Google Scholar 

  • Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35(8):564–577

    Article  PubMed  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Ann Rev Biochem 67:609–652

    Article  PubMed  Google Scholar 

  • Iqbal J, Zaidi M (2005) Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 328(3):751–755

    Article  PubMed  Google Scholar 

  • Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, Riley G (2001) Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biology 20(3):159–169

    Article  PubMed  Google Scholar 

  • Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y (2000) Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol - Heart Circ Physiol 278(2):H521–529

    PubMed  Google Scholar 

  • Jackson CL, Schwartz SM (1992) Pharmacology of smooth muscle cell replication. Hypertension 20(6):713–736

    PubMed  Google Scholar 

  • Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Integrin-mediated echanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. In: Proceedings of the national academy of sciences of the United States of America vol 98(3), pp 1042–1046

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29(7):364–370

    Article  PubMed  Google Scholar 

  • Jin M, Emkey GR, Siparsky P, Trippel SB, Grodzinsky AJ (2003) Combined effects of dynamic tissue shear deformation and insulin-like growth factor I on chondrocyte biosynthesis in cartilage explants. Arch Bioch Biophys 414(2):223–231

    Article  Google Scholar 

  • Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM (1997) Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem 272(2):1395–1401

    Article  PubMed  Google Scholar 

  • Joki N, Kaname S, Hirakata M, Hori Y, Yamaguchi T, Fujita T, Katoh T, Kurokawa K (2000) Tyrosine-kinase dependent TGF-beta and extracellular matrix expression by mechanical stretch in vascular smooth muscle cells. Hypertens Res - Clin Exp 23(2):91–99

    Google Scholar 

  • Jones DB, Nolte H, Scholubbers JG, Turner E, Veltel D (1991) Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 12(2):101–110

    Article  PubMed  Google Scholar 

  • Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    Article  PubMed  Google Scholar 

  • Kakisis JD, Liapis CD, Sumpio BE (2004) Effects of cyclic strain on vascular cells. Endothelium 11(1):17–28

    Article  PubMed  Google Scholar 

  • Karin M (1992) Signal transduction from cell surface to nucleus in development and disease. FASEB Journal 6(8):2581–2590

    PubMed  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4):389–406

    Article  PubMed  Google Scholar 

  • Kartsogiannis V, Ng KW (2004) Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 228(1–2): 79–102

    Article  PubMed  Google Scholar 

  • Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33(1):45–51

    Article  PubMed  Google Scholar 

  • Kaspar D, Seidl W, Neidlinger-Wilke C, Beck A, Claes L, Ignatius A (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35(7):873–880

    Article  PubMed  Google Scholar 

  • Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279(13):12001–12004

    Article  PubMed  Google Scholar 

  • Kim SJ, Romeo D, Yoo YD, Park K (1994) Transforming growth factor-beta: expression in normal and pathological conditions. Horm Res 42(1–2):5–8

    PubMed  Google Scholar 

  • Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17(10):979–983

    Article  PubMed  Google Scholar 

  • Kirber MT, Guerrero-Hernandez A, Bowman DS, Fogarty KE, Tuft RA, Singer JJ, Fay F. S.: Multiple pathways responsible for the stretch-induced increase in Ca2+ concentration in toad stomach smooth muscle cells. J Physiol 524(Pt 1):3–17

  • Kohler R, Schonfelder G, Hopp H, Distler A, Hoyer J (1998) Stretch-activated cation channel in human umbilical vein endothelium in normal pregnancy and in preeclampsia. J Hypertens 16(8):1149–1156

    Article  PubMed  Google Scholar 

  • Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y (1996) Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J 10(5):631–636

    PubMed  Google Scholar 

  • Kulik TJ, Alvarado SP (1993) Effect of stretch on growth and collagen synthesis in cultured rat and lamb pulmonary arterial smooth muscle cells. J Cell Physiol 157(3):615–624

    Article  PubMed  Google Scholar 

  • Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J (1992) Raf-1 activates MAP kinase-kinase. Nature 358(6385):417–421

    Article  PubMed  Google Scholar 

  • Labat-Robert J, Bihari-Varga M, Robert L (1990) Extracellular matrix. FEBS Letters 268(2):386–393

    Article  PubMed  Google Scholar 

  • Lammerding J, Kamm RD, Lee RT (2004) Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci 1015:53–70

    Article  PubMed  Google Scholar 

  • Lane Smith R, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ (2000) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37(1–2):95–107

    PubMed  Google Scholar 

  • Lee AA, Delhaas T, McCulloch AD, Villarreal FJ (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31(10):1833–1843

    Article  PubMed  Google Scholar 

  • Lee CR, Grodzinsky AJ, Spector M (2003) Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mat Res 64A(3):560–569

    Article  Google Scholar 

  • Lee RT, Yamamoto C, Feng Y, Potter-Perigo S, Briggs WH, Landschulz KT, Turi TG, Thompson JF, Libby P, Wight TN (2001) Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem 276(17):13847–13851

    PubMed  Google Scholar 

  • Leung DY, Glagov S, Mathews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191(4226):475–477

    PubMed  Google Scholar 

  • Li Q, Muragaki Y, Ueno H, Ooshima A (1997) Stretch-induced proliferation of cultured vascular smooth muscle cells and a possible involvement of local renin-angiotensin system and platelet-derived growth factor (PDGF). Hypertens Res 20(3):217–223

    PubMed  Google Scholar 

  • Li Q, Muragaki Y, Hatamura I, Ueno H, Ooshima A (1998) Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-beta. J Vasc Res 35(2):93–103

    Article  PubMed  Google Scholar 

  • Lijnen HR (2003) Metalloproteinases in development and progression of vascular disease. Pathophysiol Haemost Thromb 33(5–6): 275–281

    Article  PubMed  Google Scholar 

  • Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8(11):437–441

    Article  PubMed  Google Scholar 

  • Luo W, Guo C, Zheng J, Chen TL, Wang PY, Vertel BM, Tanzer ML (2000) Aggrecan from start to finish. J Bone Miner Metab 18(2):51–56

    Article  PubMed  Google Scholar 

  • MacKenna DA, Dolfi F, Vuori K, Ruoslahti E (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101(2):301–310

    PubMed  Google Scholar 

  • MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46(2):257–263

    Article  PubMed  Google Scholar 

  • Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35(9):1301–1305

    Article  PubMed  Google Scholar 

  • Malek AM, Izumo S (1995) Control of endothelial cell gene expression by flow. J Biomech 28(12):1515–1528

    Article  PubMed  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. In: Proceedings of the National academy of Sciences of the United States of America Vol. 94(3), pp 849–854

  • Mao JJ, Nah HD (2004) Growth and development: hereditary and mechanical modulations. Am J Ortho Dentofacial Orthop 125(6):676–689

    Article  Google Scholar 

  • Mathews MB (1975) Connective tissue: macromolecular structure and evolution. Springer Berlin Heidelberg, New York

    Google Scholar 

  • Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260

    Article  PubMed  Google Scholar 

  • Mauck RL, Seyhan SL, Ateshian GA, Hung CT (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30(8):1046–1056

    Article  PubMed  Google Scholar 

  • Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4):597–611

    Article  PubMed  Google Scholar 

  • Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil 11(12):879–890

    Article  PubMed  Google Scholar 

  • McCawley LJ, Matrisian LM (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Molecular Medicine Today 6(4):149–156

    Article  PubMed  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13(5):534–540

    Google Scholar 

  • Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108(1):191–197

    Article  PubMed  Google Scholar 

  • Michiels C (2003) Endothelial cell functions. J Cell Physiol 196(3):430–443

    Article  PubMed  Google Scholar 

  • Mostafavi-Pour Z, Askari JA, Parkinson SJ, Parker PJ, Ng TT, Humphries MJ (2003) Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol 161(1):155–167

    Article  PubMed  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16(5):558–564

    Article  PubMed  Google Scholar 

  • Mow VC (1994) Cell mechanics and cellular engineering. Springer Berlin Heidelberg, New York

    Google Scholar 

  • Mullender M, ElHaj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42(1):14–21

    PubMed  Google Scholar 

  • Murata M, Bonassar LJ, Wright M, Mankin HJ, Towle CA (2003) A role for the interleukin-1 receptor in the pathway linking static mechanical compression to decreased proteoglycan synthesis in surface articular cartilage. Arch Biochem Biophys 413(2):229–235

    Article  PubMed  Google Scholar 

  • Murray DW, Rushton N (1990) The effect of strain on bone cell prostaglandin E2 release: a new experimental method. Calcif Tissue Int 47(1):35–39

    PubMed  Google Scholar 

  • Naruse K, Sokabe M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264(4 Pt 1):C1037–1044

    PubMed  Google Scholar 

  • Neidlinger-Wilke C, Wilke HJ, Claes L (1994) Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res 12(1):70–78

    Article  PubMed  Google Scholar 

  • Nishimoto N, Kishimoto T (2004) Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol 4(4):386–391

    Article  PubMed  Google Scholar 

  • O’Callaghan CJ, Williams B (2000) Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta(1). Hypertension 36(3):319–324

    PubMed  Google Scholar 

  • Oddou C, Wendling S, Petite H, Meunier A (2000) Cell mechanotransduction and interactions with biological tissues. Biorheology 37(1,2):17–25

    PubMed  Google Scholar 

  • von Offenberg Sweeney N, Cummins PM, Birney YA, Cullen JP, Redmond EM, Cahill PA (2004) Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovasc Res 63(4):625–634

    Article  PubMed  Google Scholar 

  • Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2(3) (2001): Reviews3005

    Google Scholar 

  • Osol G (1995) Mechanotransduction by vascular smooth muscle. J Vasc Res 32(5):275–292

    PubMed  Google Scholar 

  • Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22(1):51–86

    Article  PubMed  Google Scholar 

  • Owens GK (1996) Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells. Circ Res 79(5):1054–1055

    PubMed  Google Scholar 

  • Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology & Bioengineering 88(3):359–368

    Google Scholar 

  • Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300(1):458–465

    Article  PubMed  Google Scholar 

  • Pavalko FM, Chen NX, Turner CH, Burr DB, Atkinson S, Hsieh YF, Qiu J, Duncan RL (1998) Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am J Physiol 275(6 Pt 1):C1591–1601

    PubMed  Google Scholar 

  • Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70(2):157–164

    PubMed  Google Scholar 

  • Poole AR (1986) Proteoglycans in health and disease: structures and functions. Biochem J 236(1):1–14

    PubMed  Google Scholar 

  • Resnick N, Gimbrone MA Jr (1995) Hemodynamic forces are complex regulators of endothelial gene expression. Faseb J 9(10):874–882

    PubMed  Google Scholar 

  • Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81(3): 177–199

    Article  PubMed  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399

    Article  PubMed  Google Scholar 

  • van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB Journal 5(13):2814–2823

    PubMed  Google Scholar 

  • Riley GP, Curry V, DeGroot J, van El B, Verzijl N, Hazleman BL, Bank RA (2002) Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biology 21(2):185–195

    Article  PubMed  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis–an update. N Engl J Med 314(8):488–500

    Article  PubMed  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801–809

    Article  PubMed  Google Scholar 

  • Ruknudin A, Sachs F, Bustamante JO (1993) Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol 264(3 Pt 2):H960–972

    PubMed  Google Scholar 

  • Ruoslahti E (1988) Structure and biology of proteoglycans. Ann Rev Cell Biol 4:229–255

    PubMed  Google Scholar 

  • Sachs F (1992) Stretch-sensitive ion channels: an update. Soc Gen Physiol Ser 47:241–260

    PubMed  Google Scholar 

  • Sadoshima J, Izumo S (1997). The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59: 551–571

    Article  PubMed  Google Scholar 

  • Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP (1993) Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol 123(4):977–991

    Article  PubMed  Google Scholar 

  • Schwartz NB, Pirok EW 3rd, Mensch JR Jr, Domowicz MS (1999) Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. Prog Nucleic Acid Res Mol Biol 62:177–225

    Article  PubMed  Google Scholar 

  • Seiki M (2002) The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 14(5):624–632

    Article  PubMed  Google Scholar 

  • Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28(4):351–362

    Article  PubMed  Google Scholar 

  • Seliktar D, Nerem RM, Galis ZS (2001) The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann Biomed Eng 29(11):923–934

    Article  PubMed  Google Scholar 

  • Shen J, Luscinskas FW, Connolly A, Dewey CF Jr, Gimbrone MA Jr (1992) Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol 262(2 Pt 1):C384–390

    PubMed  Google Scholar 

  • Sigurdson W, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262(4 Pt 2):H1110–1115

    PubMed  Google Scholar 

  • Silver FH, Kato YP, Ohno M, Wasserman AJ (1992) Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J Long-Term Eff Med Implants 2(2–3):165–198

    PubMed  Google Scholar 

  • Silver FH, Siperko LM, Seehra GP (2003) Mechanobiology of force transduction in dermal tissue. Skin Res Technol 9(1):3–23

    Article  PubMed  Google Scholar 

  • Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U (2001) Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol 86(1):48–52

    PubMed  Google Scholar 

  • Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, Caler WE, Sandell LJ, Schurman DJ (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res 14(1):53–60

    Article  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell& Developmental Biology 17:463–516

    Google Scholar 

  • Stockwell R.A. (1979) Biology of cartilage cells. Cambridge Univ. Press., Cambridge, New York

    Google Scholar 

  • Sumpio BE, Banes AJ, Link WG, Johnson G Jr (1988) Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch Surg 123(10):1233–1236

    PubMed  Google Scholar 

  • Sumpio BE, Riley JT, Dardik A (2002) Cells in focus: endothelial cell. Int J Biochem Cell Biol 34(12):1508–1512

    Article  PubMed  Google Scholar 

  • Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin HC (1998) Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchym al cells. J Cell Sci 111(Pt 14):2067–2076

    PubMed  Google Scholar 

  • Tanabe Y, Saito M, Ueno A, Nakamura M, Takeishi K, Nakayama K (2000) Mechanical stretch augments PDGF receptor beta expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells. Mol Cell Biochem 215(1–2):103–113

    Article  PubMed  Google Scholar 

  • Tipton CM, Vailas AC, Matthes RD (1986) Experimental studies on the influences of physical activity on ligaments, tendons and joints: a brief review. Acta Med Scand Suppl 711:157–168

    PubMed  Google Scholar 

  • Toborek M, Kaiser S (1999) Endothelial cell functions. Relationship to atherogenesis. Basic Res Cardiol 94(5):295–314

    Article  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews. Cancer 4(7):528–539

    Article  PubMed  Google Scholar 

  • Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3(6):346–355

    Article  PubMed  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61(2):203–212

    Article  PubMed  Google Scholar 

  • Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S (2002) Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arterioscler Thromb Vasc Biol 22(1):69–75

    Article  PubMed  Google Scholar 

  • Verheul HM, Pinedo HM (2003) Vascular endothelial growth factor and its inhibitors. Drugs Today (Barc) 39 Suppl C:81–93

    Google Scholar 

  • Villarreal FJ, Dillmann WH (1992) Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Am J Physiol 262(6 Pt 2):H1861–1866

    PubMed  Google Scholar 

  • Visse R., Nagase H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839

    Article  PubMed  Google Scholar 

  • Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14(17):2123–2133

    Article  PubMed  Google Scholar 

  • Wang JH (2005) Mechanobiology of tendon. J Biomech (in press)

  • Wang H, Ip W, Boissy R, Grood ES (1995) Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J Biomech 28(12):1543–1552

    Article  PubMed  Google Scholar 

  • Wang JH, Goldschmidt-Clermont P, Moldovan N, Yin FC (2000) Leukotrienes and tyrosine phosphorylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells. Cell Motil Cytoskeleton 46(2):137–145

    Article  PubMed  Google Scholar 

  • Wang JH, Goldschmidt-Clermont P, Wille J, Yin, FC (2001) Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J Biomech 34(12):1563–1572

    Article  PubMed  Google Scholar 

  • Wang J, Su M, Fan J, Seth A, McCulloch CA (2002) Transcriptional regulation of a contractile gene by mechanical forces applied through integrins in osteoblasts. J Biol Chem 277(25):22889–22895

    Article  PubMed  Google Scholar 

  • Wang BW, Chang H, Lin S, Kuan P, Shyu KG (2003) Induction of matrix metalloproteinases-14 and −2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res 59(2):460–469

    Article  PubMed  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111): 1124–1127

    PubMed  MathSciNet  Google Scholar 

  • Wang JH, Grood ES (2000) The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect Tissue Res 41(1):29–36

    PubMed  Google Scholar 

  • Werb Z, Chin JR (1998) Extracellular matrix remodeling during morphogenesis. Ann NY Acad Sci 857:110–118

    Article  PubMed  Google Scholar 

  • Williams B (1998) Mechanical influences on vascular smooth muscle cell function. J Hypertens 16(12 Pt 2):1921–1929

    Article  PubMed  Google Scholar 

  • Wilson E, Sudhir K, Ives HE (1995) Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Inves 96(5): 2364– 2372

    Google Scholar 

  • Wolvekamp MC, Marquet RL (1990) Interleukin-6: historical background, genetics and biological significance. Immunol Lett 24(1): 1–9

    Article  PubMed  Google Scholar 

  • Woo SL, Gomez MA, Woo YK, Akeson WH (1982) Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19(3):397–408

    PubMed  Google Scholar 

  • Woodell JE, LaBerge M, Langan EM 3rd, Hilderman RH (2003) In vitro strain-induced endothelial cell dysfunction determined by DNA synthesis. In: Proceedings of the Institution of Mechanical Engineers. Part H - J Engineering in Medicine vol 217(1) pp 13–20

  • Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamemoto H, Kadowaki T, Nagai R, Yazaki Y (1993) Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268(16):12069–12076

    PubMed  Google Scholar 

  • Yang G, Crawford RC, Wang JH (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37(10):1543–1550

    Article  PubMed  Google Scholar 

  • Yang JH, Briggs WH, Libby P, Lee RT (1998) Small mechanical strains selectively suppress matrix metalloproteinase-1 expression by human vascular smooth muscle cells. J Biol Chem 273(11):6550–6555

    Article  PubMed  Google Scholar 

  • Yasuda T, Kondo S, Homma T, Harris RC (1996) Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98(9):1991–2000

    PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    PubMed  Google Scholar 

  • Yurchenco PD, Birk DE, Mecham RP (1994) Extracellular matrix assembly and structure. Academic Press, San Diego

    Google Scholar 

  • Zeichen J, van Griensven M, Bosch U (2000) The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 28(6):888–892

    PubMed  Google Scholar 

  • Ziegler T, Bouzourene K, Harrison VJ, Brunner HR, Hayoz D (1998) Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol (Online) 18(5): 686–692

    Google Scholar 

  • Zwahlen R, Walz A, Rot A (1993) In vitro and in vivo activity and pathophysiology of human interleukin-8 and related peptides. Int Rev Exp Pathol 34(Pt B):27–42

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H. -C. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.H.C., Thampatty, B.P. An Introductory Review of Cell Mechanobiology. Biomech Model Mechanobiol 5, 1–16 (2006). https://doi.org/10.1007/s10237-005-0012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-005-0012-z

Keywords

Navigation