Skip to main content

Advertisement

Log in

A methodology for in silico endovascular repair of abdominal aortic aneurysms

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Endovascular aneurysm repair (EVAR) can involve some unfavorable complications such as endoleaks or stent-graft (SG) migration. Such complications, resulting from the complex mechanical interaction of vascular tissue, SG and blood flow or incompatibility of SG design and vessel geometry, are difficult to predict. Computational vascular mechanics models can be a predictive tool for the selection, sizing and placement process of SGs depending on the patient-specific vessel geometry and hence reduce the risk of potential complications after EVAR. In this contribution, we present a new in silico EVAR methodology to predict the final state of the deployed SG after intervention and evaluate the mechanical state of vessel and SG, such as contact forces and wall stresses. A novel method to account for residual strains and stresses in SGs, resulting from the precompression of stents during the assembly process of SGs, is presented. We suggest a parameter continuation approach to model various different sizes of SGs within one in silico EVAR simulation which can be a valuable tool when investigating the issue of SG oversizing. The applicability and robustness of the proposed methods are demonstrated on the example of a synthetic abdominal aortic aneurysm geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. According to Beier and Neely (1992) who introduced the term “control primitives”.

  2. Obviously the orthogonality property of the triad according to Eqs. (5c) and (5d) has to be preserved.

  3. The methodology can easily be extended to SG models with an uncovered stent in the proximal landing zone. However, such SG designs are not considered here for now.

References

  • Alexa M, Cohen-Or D, Levin D (2000) As-rigid-as-possible shape interpolation. In Proceedings of the 27th annual conference on computer graphics and interactive techniques, pp. 157–164, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co

  • Altnji H-E, Bou-Saïd B, Berre Walter-Le H (2015) Morphological and stent design risk factors to prevent migration phenomena for a thoracic aneurysm: a numerical analysis. Med Eng Phys 37(1):23–33

    Article  Google Scholar 

  • Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B (2011) Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys 33(3):281–289

    Article  Google Scholar 

  • Auricchio F, Conti M, Marconi S, Reali A, Tolenaar JL, Trimarchi S (2013) Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput Biol Med 43(4):386–394

    Article  Google Scholar 

  • Beebe HG, Cronenwett JL, Katzen BT, Brewster DC, Green RM, Investigators VET et al (2001) Results of an aortic endograft trial: impact of device failure beyond 12 months. J Vasc Surg 33(2):55–63

    Article  Google Scholar 

  • Beier T, Neely S (1992) Feature-based image metamorphosis. Comput Graph 26(2):35–42

    Article  Google Scholar 

  • Biehler J, Gee MW, Wall WA (2015) Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a bayesian multi-fidelity scheme. Biomech Model Mechanobiol 14(3):489–513

    Article  Google Scholar 

  • Bloomenthal J (1990) Calculation of reference frames along a space curve. Graph Gems 1:567–571

    Article  Google Scholar 

  • Canaud L, Alric P, Laurent M, Baum T-P, Branchereau P, Marty-Ané CH, Berthet J-P (2008) Proximal fixation of thoracic stent-grafts as a function of oversizing and increasing aortic arch angulation in human cadaveric aortas. J Endovasc Therapy 15(3):326–334

    Article  Google Scholar 

  • Carew TE, Vaishnav RN, Patel DJ (1968) Compressibility of the arterial wall. Circ Res 23(1):61–68

    Article  Google Scholar 

  • Carmel E, Cohen-Or D (1998) Warp-guided object-space morphing. Vis Comput 13(9):465–478

    Article  MATH  Google Scholar 

  • Chang RW, Goodney P, Tucker L-Y, Okuhn S, Hua H, Rhoades A, Sivamurthy N, Hill B (2013) Ten-year results of endovascular abdominal aortic aneurysm repair from a large multicenter registry. J Vasc Surg 58(2):324–332

    Article  Google Scholar 

  • Chuter T, Ivancev K, Malina M, Resch T, Brunkwall J, Lindblad B, Risberg B (1997) Aneurysm pressure following endovascular exclusion. Eur J Vasc Endovasc Surg 13(1):85–87

    Article  Google Scholar 

  • Cochennec F, Becquemin J, Desgranges P, Allaire E, Kobeiter H, Roudot-Thoraval F (2007) Limb graft occlusion following evar: clinical pattern, outcomes and predictive factors of occurrence. Eur J Vasc Endovasc Surg 34(1):59–65

    Article  Google Scholar 

  • De Bock S, Iannaccone F, De Santis G, De Beule M, Mortier P, Verhegghe B, Segers P (2012a) Our capricious vessels: the influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J Biomech 45(8):1353–1359

    Article  Google Scholar 

  • De Bock S, Iannaccone F, De Santis G, De Beule M, Van Loo D, Devos D, Vermassen F, Segers P, Verhegghe B (2012b) Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J Mech Behav Biomed Mater 13:129–139

    Article  Google Scholar 

  • De Bock S, Iannaccone F, De Beule M, Van Loo D, Vermassen F, Verhegghe B, Segers P (2013) Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics. J Biomech 46(14):2477–2482

    Article  Google Scholar 

  • De Bock S, Iannaccone F, De Beule M, Vermassen F, Segers P, Verhegghe B (2014) What if you stretch the ifu? A mechanical insight into stent graft instructions for use in angulated proximal aneurysm necks. Med Eng Phys 36(12):1567–1576

    Article  Google Scholar 

  • de Neto E Souza, Perić D, Dutko M, Owen D (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20):3277–3296

    Article  MathSciNet  MATH  Google Scholar 

  • Demanget N, Avril S, Badel P, Orgéas L, Geindreau C, Albertini J-N, Favre J-P (2012) Computational comparison of the bending behavior of aortic stent-grafts. J Mech Behav Biomed Mater 5(1):272–282

    Article  Google Scholar 

  • Demanget N, Duprey A, Badel P, Orgéas L, Avril S, Geindreau C, Albertini J-N, Favre J-P (2013) Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts. J Endovasc Therapy 20(4):523–535

    Article  Google Scholar 

  • Doll S, Schweizerhof K (2000) On the development of volumetric strain energy functions. J Appl Mech 67(1):17–21

    Article  MATH  Google Scholar 

  • Ellozy SH, Carroccio A, Lookstein RA, Jacobs TS, Addis MD, Teodorescu VJ, Marin ML (2006) Abdominal aortic aneurysm sac shrinkage after endovascular aneurysm repair: correlation with chronic sac pressure measurement. J Vasc Surg 43(1):2–7

    Article  Google Scholar 

  • Farouki RT (2002) Exact rotation-minimizing frames for spatial pythagorean-hodograph curves. Graph Models 64(6):382–395

    Article  MATH  Google Scholar 

  • Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37(4):724–732

    Article  Google Scholar 

  • Forbes TL, DeRose G, Kribs SW, Harris KA (2004) Cumulative sum failure analysis of the learning curve with endovascular abdominal aortic aneurysm repair. J Vasc Surg 39(1):102–108

    Article  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  • Gasser TC, Görgülü G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48(1):179–188

    Article  Google Scholar 

  • Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J (2010) Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg 40(2):176–185

    Article  Google Scholar 

  • Gee M, Förster C, Wall W (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1):52–72

    Article  MATH  Google Scholar 

  • Geest J P Vande, Martino E S Di, Bohra A, Makaroun MS, Vorp DA (2006a) A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment. Ann New York Acad Sci 1085(1):11–21

    Article  Google Scholar 

  • Geest J P Vande, Sacks MS, Vorp DA (2006b) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39(7):1324–1334

    Article  Google Scholar 

  • Geest J P Vande, Sacks MS, Vorp DA (2006c) A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech 39(13):2347–2354

    Article  Google Scholar 

  • Gindre J, Bel-Brunon A, Kaladji A, Duménil A, Rochette M, Lucas A, Haigron P, Combescure A (2015) Finite element simulation of the insertion of guidewires during an evar procedure: example of a complex patient case, a first step toward patient-specific parameterized models. Int J Numer Methods Biomed Eng 31(7):e02716

  • Goldstein E, Gotsman C (1995) Polygon morphing using a multiresolution representation. In: Graphics interface, pp 247–247. Canadian Information Processing Society

  • Greenhalgh RM, Powell JT (2008) Endovascular repair of abdominal aortic aneurysm. N Engl J Med 358(5):494–501

    Article  Google Scholar 

  • Greenhalgh RM, Brown LC, Powell JT (2010) Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med 362(20):1863–1871

    Article  Google Scholar 

  • Guggenheimer H (1989) Computing frames along a trajectory. Comput Aided Geom Des 6(1):77–78

    Article  MathSciNet  MATH  Google Scholar 

  • Hall GJ, Kasper EP (2006) Comparison of element technologies for modeling stent expansion. J Biomech Eng 128(5):751–756

    Article  Google Scholar 

  • Haskett D, Johnson G, Zhou A, Utzinger U, Geest JV (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9(6):725–736

    Article  Google Scholar 

  • Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET et al (2005) An overview of the trilinos project. ACM Trans Math Softw (TOMS) 31(3):397–423

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1):166–180

    Article  Google Scholar 

  • Humphrey J, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45(5):805–814

    Article  Google Scholar 

  • Iannaccone F, De Beule M, De Bock S, Van der Bom IM, Gounis MJ, Wakhloo AK, Boone M, Verhegghe B, Segers P (2016) A finite element method to predict adverse events in intracranial stenting using microstents: in vitro verification and patient specific case study. Ann Biomed Eng 44(2):442–452

    Article  Google Scholar 

  • Jordan WD, Ouriel K, Mehta M, Varnagy D, Moore WM, Arko FR, Joye J, de Vries J-PP, de Vries JP, Eckstein H et al (2015) Outcome-based anatomic criteria for defining the hostile aortic neck. J Vasc Surg 61(6):1383–1390

    Article  Google Scholar 

  • Kalteis M, Benedikt P, Huber F, Haller F, Kastner M, Lugmayr H (2012) Looking for a learning curve in evar based on the zenith stent graft. Int J Angiol 21(04):223–228

    Article  Google Scholar 

  • Kanai T, Suzuki H, Kimura F (1997) 3D geometric metamorphosis based on harmonic map. In: Proceedings, the fifth pacific conference on computer graphics and applications, 1997, pp 97–104

  • Katsargyris A, Spinelli D, Oikonomou K, Mufty H, Verhoeven EL (2017) Incomplete expansion of chimney stent graft during chimney-thoracic endovascular aneurysm repair. Ann Vasc Surg 39:293–e1

    Article  Google Scholar 

  • Kleinstreuer C, Li Z, Basciano C, Seelecke S, Farber M (2008) Computational mechanics of nitinol stent grafts. J Biomech 41(11):2370–2378

    Article  Google Scholar 

  • Klok F (1986) Two moving coordinate frames for sweeping along a 3d trajectory. Comput Aided Geom Des 3(3):217–229

    Article  MathSciNet  MATH  Google Scholar 

  • Kouvelos GN, Oikonomou K, Antoniou GA, Verhoeven EL, Katsargyris A (2017) A systematic review of proximal neck dilatation after endovascular repair for abdominal aortic aneurysm. J Endovasc Therapy 24(1):59–67

    Article  Google Scholar 

  • Kwon S, Rectenwald J, Baek S (2011) Intrasac pressure changes and vascular remodeling after endovascular repair of abdominal aortic aneurysms: review and biomechanical model simulation. J Biomech Eng 133(1):011011

    Article  Google Scholar 

  • Lazarus F, Coquillart S, Jancene P (1994) Axial deformations: an intuitive deformation technique. Comput Aided Des 26(8):607–613

    Article  MATH  Google Scholar 

  • Lerios A, Garfinkle CD, Levoy M (1995) Feature-based volume metamorphosis. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 449–456. ACM

  • Lin KK, Kratzberg JA, Raghavan ML (2012) Role of aortic stent graft oversizing and barb characteristics on folding. J Vasc Surg 55(5):1401–1409

    Article  Google Scholar 

  • Maier A, Gee M, Reeps C, Eckstein H-H, Wall W (2010a) Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol 9(5):511–521

    Article  Google Scholar 

  • Maier A, Gee MW, Reeps C, Pongratz J, Eckstein H-H, Wall WA (2010b) A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng 38(10):3124–3134

    Article  Google Scholar 

  • Maleux G, Koolen M, Heye S (2009) Complications after endovascular aneurysm repair. Semin Interv Radiol 26:3–9

    Article  Google Scholar 

  • Mohan I, Laheij R, Harris P (2001) Risk factors for endoleak and the evidence for stent-graft oversizing in patients undergoing endovascular aneurysm repair. Eur J Vasc Endovasc Surg 21(4):344–349

    Article  Google Scholar 

  • Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1–2):1–18

    Article  Google Scholar 

  • Moll FL, Powell J, Fraedrich G, Verzini F, Haulon S, Waltham M, Van Herwaarden J, Holt P, Van Keulen J, Rantner B et al (2011) Management of abdominal aortic aneurysms clinical practice guidelines of the european society for vascular surgery. Eur J Vasc Endovasc Surg 41:S1–S58

    Article  Google Scholar 

  • Morlacchi S, Colleoni SG, Cárdenes R, Chiastra C, Diez JL, Larrabide I, Migliavacca F (2013) Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med Eng Phys 35(9):1272–1281

    Article  Google Scholar 

  • Mortier P, Holzapfel GA, De Beule M, Van Loo D, Taeymans Y, Segers P, Verdonck P, Verhegghe B (2010) A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng 38(1):88–99

    Article  Google Scholar 

  • Niestrawska JA, Viertler C, Regitnig P, Cohnert TU, Sommer G, Holzapfel GA (2016) Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling. J R Soc Interface 13(124):20160620

    Article  Google Scholar 

  • Ockert S, Boeckler D, Allenberg J, Schumacher H (2007) Rupturiertes abdominelles aortenaneurysma. Gefaesschirurgie 12(5):379–391

    Article  Google Scholar 

  • Ogden R (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Eng Sci 326:565–584 (The Royal Society)

    Article  MATH  Google Scholar 

  • Perrin D, Badel P, Orgéas L, Geindreau C, Dumenil A, Albertini J-N, Avril S (2015a) Patient-specific numerical simulation of stent-graft deployment: validation on three clinical cases. J Biomech 48(10):1868–1875

    Article  Google Scholar 

  • Perrin D, Demanget N, Badel P, Avril S, Orgéas L, Geindreau C, Albertini J-N (2015b) Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool. Int J Numer Methods Biomed Eng 31(1):e02698

  • Perrin D, Badel P, Orgeas L, Geindreau C, Roscoat S rolland du, Albertini J-N, Avril S (2016) Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. J Mech Behav Biomed Mater 63:86–99

    Article  Google Scholar 

  • Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391

    Article  MathSciNet  MATH  Google Scholar 

  • Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3d finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465

    Article  MathSciNet  MATH  Google Scholar 

  • Prasad A, Xiao N, Gong X-Y, Zarins CK, Figueroa CA (2012) A computational framework for investigating the positional stability of aortic endografts. Biomech Model Mechanobiol 12:1–19

    Google Scholar 

  • Raghavan M, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33(4):475–482

    Article  Google Scholar 

  • Raghavan ML, Hanaoka MM, Kratzberg JA, de Higuchi Lourdes M, Silva E S Da (2011) Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J Biomech 44(13):2501–2507

    Article  Google Scholar 

  • Roy D, Lerouge S, Inaekyan K, Kauffmann C, Mongrain R, Soulez G (2016) Experimental validation of more realistic computer models for stent-graft repair of abdominal aortic aneurysms, including pre-load assessment. Int J Numer Methods Biomed Eng 32(12):e02769

  • Sampaio SM, Panneton JM, Mozes GI, Andrews JC, Bower TC, Karla M, Noel AA, Cherry KJ, Sullivan T, Gloviczki P (2004) Proximal type i endoleak after endovascular abdominal aortic aneurysm repair: predictive factors. Ann Vasc Surg 18(6):621–628

    Article  Google Scholar 

  • Sternbergh WC, Money SR, Greenberg RK, Chuter TA, Investigators Z et al (2004) Influence of endograft oversizing on device migration, endoleak, aneurysm shrinkage, and aortic neck dilation: results from the zenith multicenter trial. J Vasc Surg 39(1):20–26

    Article  Google Scholar 

  • van Prehn J, Schlösser F, Muhs B, Verhagen H, Moll F, van Herwaarden J (2009) Oversizing of aortic stent grafts for abdominal aneurysm repair: a systematic review of the benefits and risks. Eur J Vasc Endovasc Surg 38(1):42–53

    Article  Google Scholar 

  • Vu-Quoc L, Tan X (2003) Optimal solid shells for non-linear analyses of multilayer composites. i. statics. Comput Methods Appl Mech Eng 192(9):975–1016

    Article  MATH  Google Scholar 

  • Wang DH, Makaroun M, Webster MW, Vorp DA (2001) Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng 123(6):536–539

    Article  Google Scholar 

  • Wang W, Jüttler B, Zheng D, Liu Y (2008) Computation of rotation minimizing frames. ACM Trans Graph (TOG) 27(1):2

    Google Scholar 

  • Wolf YG, Hill BB, Lee WA, Corcoran CM, Fogarty TJ, Zarins CK (2001) Eccentric stent graft compression: an indicator of insecure proximal fixation of aortic stent graft. J Vasc Surg 33(3):481–487

    Article  Google Scholar 

  • Wyss TR, Dick F, Brown LC, Greenhalgh RM (2011) The influence of thrombus, calcification, angulation, and tortuosity of attachment sites on the time to the first graft-related complication after endovascular aneurysm repair. J Vasc Surg 54(4):965–971

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support and funding by the Leibniz Rechenzentrum München (LRZ) of the Bavarian Academy of Sciences under contract number pr48ta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Gee.

Ethics declarations

Conflict of interest

All authors declare that no conflict of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmler, A., Lutz, B., Reeps, C. et al. A methodology for in silico endovascular repair of abdominal aortic aneurysms. Biomech Model Mechanobiol 17, 1139–1164 (2018). https://doi.org/10.1007/s10237-018-1020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1020-0

Keywords

Navigation