Skip to main content

Transport of organic anions across the basolateral membrane of proximal tubule cells

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 146))

Abstract

Renal proximal tubules secrete diverse organic anions (OA) including widely prescribed anionic drugs. Here, we review the molecular properties of cloned transporters involved in uptake of OA from blood into proximal tubule cells and provide extensive lists of substrates handled by these transport systems. Where tested, transporters have been immunolocalized to the basolateral cell membrane. The sulfate anion transporter 1 (sat-1) cloned from human, rat and mouse, transported oxalate and sulfate. Drugs found earlier to interact with sulfate transport in vivo have not yet been tested with sat-1. The Na+-dicarboxylate cotransporter 3 (NaDC-3) was cloned from human, rat, mouse and flounder, and transported three Na+ with one divalent di- or tricarboxylate, such as citric acid cycle intermediates and the heavy metal chelator 2,3-dimercaptosuccinate (succimer). The organic anion transporter 1 (OAT1) cloned from several species was shown to exchange extracellular OA against intracellular α-ketoglutarate. OAT1 translocated, e.g., anti-inflammatory drugs, antiviral drugs, β-lactam antibiotics, loop diuretics, ochratoxin A, and p-aminohippurate. Several OA, including probenecid, inhibited OAT1. Human, rat and mouse OAT2 transported selected anti-inflammatory and antiviral drugs, methotrexate, ochratoxin A, and, with high affinities, prostaglandins E2 and F. OAT3 cloned from human, rat and mouse showed a substrate specificity overlapping with that of OAT1. In addition, OAT3 interacted with sulfated steroid hormones such as estrone-3-sulfate. The driving forces for OAT2 and OAT3, the relative contributions of all OA transporters to, and the impact of transporter regulation by protein kinases on renal drug excretion in vivo must be determined in future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, Endou H (1999) Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol 55:847–854

    CAS  PubMed  Google Scholar 

  • Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, Cha SH, Sekine T, Sakthisekaran D, Endou H (2002a) Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta 1590:64–75

    Article  CAS  PubMed  Google Scholar 

  • Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Sakthisekaran D, Endou H (2002b) Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol 88:69–76

    Article  CAS  PubMed  Google Scholar 

  • Bahn A, Prawitt D, Butler D, Reid G, Enklaar T, Wolff NA, Ebbinghaus C, Hillemann A, Schulten H-J, Gunawan B, Füazesi L, Zabel B, Burckhardt G (2000) Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochem Biophys Res Commun 275:623–630

    Article  CAS  PubMed  Google Scholar 

  • Bahn A, Quondamatteo F, Knabe M, Godehardt S, Hillemann R, Herken G, Burckhardt G (2001a) Evidences for an important role of the organic anion transporter 1 (OAT1) in handling of neurotransmitter metabolites in the eye. Pflügers Arch Eur J Physiol 441:R126

    Google Scholar 

  • Bahn A, Reid G, Schulten H-J, Ebbinghaus C, Hillemann A, Füzesi L, Burckhardt G, Wolff NA (2001b) Cloning and characterization of the human organic anion transporter 2 (hOAT2). FASEB J 15:A434

    Google Scholar 

  • Bahn A, Knabe M, Hagos Y, Rödiger M, Godehardt S, Grober-Neufeld Ds, Evans KK, Burckhardt G, Wright SH (2002) Interaction of the metal chelator 2,3-dimercapto-1-propanesulfonate with the rabbit multispecific organic anion transporter 1 (rbOAT1). Mol Pharmacol 62:1128–1136

    Article  CAS  PubMed  Google Scholar 

  • Baruch SB, Burich RL, Eun CK, King VF (1975) Renal metabolism of citrate. Med Clin North Am 59:569–582

    Article  CAS  PubMed  Google Scholar 

  • Bästlein C, Burckhardt G (1986) Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS. Am J Physiol Renal Physiol 250:F226–F234

    Article  Google Scholar 

  • Beck L, Markovich D (2000) The mouse Na+-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275:11880–11890

    Article  CAS  PubMed  Google Scholar 

  • Beck L, Silve C (2001) Molecular aspects of renal tubular handling and regulation of inorganic sulfate. Kidney Int 59:835–845

    Article  CAS  PubMed  Google Scholar 

  • Beyer KH, Russo HF, Tillson EK, Miller AK, Verwey WF, Gass SR (1951) ‘Benemid’, p-(di-n-propylsulfamyl)-benzoic acid: its renal affinity and its elimination. Am J Physiol 166:625–640

    Article  CAS  PubMed  Google Scholar 

  • Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ (1994) Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269:3017–3021

    Article  CAS  PubMed  Google Scholar 

  • Brady KP, Dushkin H, Förnzler D, Koike T, Magner F, Her H, Gullans S, Segre GV, Green RM, Beier DR (1999) A novel putative transporter maps top the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 56:254–261

    Article  CAS  PubMed  Google Scholar 

  • Brazy PC, Dennis VW (1981) Sulfate transport in rabbit proximal convoluted tubules: presence of an anion exchange. Am J Physiol Renal Physiol 241:F300–F307

    Article  CAS  Google Scholar 

  • Buist SCN, Cherrington NJ, Choudhuri S, Hartley DP, Klaasen CD (2002) Gender-specific and developmental influences on the expression of rat organic anion transporters. J Pharmacol Exp Ther 301:145–151

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt BC, Sato K, Frömter E (1984) Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflügers Arch 401: 34–42

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt BC, Steffgen J, Langheit D, Müller GA, Burckhardt G (2000a) Potential-dependent steady-state kinetics of a dicarboxylate transporter cloned from winter flounder kidney. Pflügers Arch 441:323–330

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt BC, Wolff NA, Burckhardt G (2000b) Electrophysiologic characterization of an anion transporter cloned from Winter flounder kidney (fROAT). J Am Soc Nephrol 11:9–17

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt BC, Drinkuth B, Menzel C, Künig A, Steffgen J, Wright SH, Burckhardt G (2002) The renal Na+-dependent dicarboxylate transporter; NaDC-3, translocates dimethyl-and disulfhydryl compounds and contributes to renal heavy metal detoxification. J Am Soc Nephrol 13:2628–2638

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt BC, Brai S, Wallis S, Krick W, Wolff NA, Burckhardt G (2003) Transport of cimetidine by flounder and human renal organic anion transporter 1. Am J Physiol Renal Physiol 284 (in press)

    Google Scholar 

  • Burckhardt G (1984) Sodium-dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflügers Arch 401:254–261

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt G, Pritchard JB (2000) Organic anion and cation antiporters. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Lippincott Williams & Wilkins, Philadelphia, pp 193–222

    Google Scholar 

  • Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278: F853–F866

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt G, Porth J, Wolff NA (1998) Functional and molecular characterization of renal transporters for p-aminohippurate (PAH). Nova Acta Leopoldina 78:35–40

    CAS  Google Scholar 

  • Burckhardt G, Bahn A, Wolff NA (2001) Molecular physiology of renal p-aminohippurate secretion. News Physiol Sci 16:114–118

    CAS  PubMed  Google Scholar 

  • Buttler D, Ebbinghaus C, Hillemann A, Wolff NA, Füzesi L, Burckhardt G, Bahn A (2001) In vivo studies, cloning and functional characterization of the isoforms of the human organic anion transporter 1 (hOAT1). Pflügers Arch Eur J Physiol 441:R170

    Google Scholar 

  • Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H (2000) Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 275: 4507–4512

    Article  CAS  PubMed  Google Scholar 

  • Cha SH, Sekine T, Fukushima J-I, Kanai Y, Kobayashi Y, Goya T, Endou H (2001) Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 59: 1277–1286

    Article  CAS  PubMed  Google Scholar 

  • Chatton J-Y, Odone M, Besseghir K, Roch-Ramel F (1990) Renal secretion of 3′-azido-3′-deoxythymidine by the rat. J Pharmacol Exp Ther 255:140–145

    CAS  PubMed  Google Scholar 

  • Chen XM, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA (1999) Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest 103:1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X-Z, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972–20981

    Article  CAS  PubMed  Google Scholar 

  • Cihlar T, Ho ES (2000) Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal Biochem 283:49–55

    Article  CAS  PubMed  Google Scholar 

  • Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH (1999) The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol 56: 570–580

    Article  CAS  PubMed  Google Scholar 

  • Clarke LA, Nasir J, McDonald H, Applegarth DA, Hayden MR (1994) Murine α-L-iduronidase: cDNA isolation and expression. Genomics 15:311–316

    Article  Google Scholar 

  • Cole DEC, Scriver CR (1980) Age-dependent serum sulfate levels in children and adolescents. Clin Chim Acta 107:135–139

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, van Dyke DH (1971) 5-Hydroxyindoleacetic acid accumulation by isolated choroid plexus. Am J Physiol 220:718–723

    Article  CAS  PubMed  Google Scholar 

  • Cundy KC, Barditch-Crovo P, Walker RE, Collier AC, Ebeling D, Toole J, Jaffe HS (1995a) Clinical pharmacokinetics of adefovir in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 39:2401–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cundy KC, Petty BG, Flaherty J, Fisher PE, Polis MA, Wachsman M, Lietman PS, Lalezari JP, Hitchcock PS, Jaffe HS (1995b) Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 39:1247–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham RF, Israili ZH, Dayton PG (1981) Clinical pharmacokinetics of probenecid. Clinical Pharmacokinetics 6:135–151

    Article  CAS  PubMed  Google Scholar 

  • David C, Ullrich KJ (1992) Substrate specificity of the luminal Na+-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchanger. Pflügers Arch 421:455–465

    Article  CAS  PubMed  Google Scholar 

  • Deguchi T, Ohtsuki S, Otagiri M, Takanaga H, Asaba H, Mori S, Terasaki T (2002) Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int 61:1760–1768

    Article  CAS  PubMed  Google Scholar 

  • Dresser MJ, Leabman MK, Giacomini KM (2001) Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharmaceut Sci 90:397–421

    Article  CAS  Google Scholar 

  • Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimotaka K, Niwa T, Kanai Y, Endou H (2002a) Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature 417:447–452

    Article  CAS  PubMed  Google Scholar 

  • Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, Yamamoto T, Sekine T, Cha SH, Niwa T, Endou H (2002b) Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther 301:797–802

    Article  CAS  PubMed  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nature Genet 17:411–422

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Dresser MJ, Shu Y, Johns SJ, Giacomini KM (2001) Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 40:5511–5520

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch G, Rumrich G, Ullrich KJ (1989) Anion transport through the contraluminal cell membrane of renal proximal tubule. The influence of hydrophobicity and molecular charge distribution on the inhibitory activity of organic anions. Biochim Biophys Acta 978:249–256

    Article  CAS  PubMed  Google Scholar 

  • Gekle M, Mildenberger S, Sauvant C, Bednarczyk D, Wright SH, Dantzler WH (1999) Inhibition of initial transport rate of basolateral organic anion carrier in renal PT by BK and phenylephrine. Am J Physiol Renal Physiol 277: F251–F256

    Article  CAS  Google Scholar 

  • George RL, Wu X, Fei Y-J, Leibach FH, Ganapathy V (1999) Molecular cloning and functional characterization of a polyspecific organic anion transporter from Caenorhabditis elegans. J Pharmacol Exp Ther 291:596–603

    CAS  PubMed  Google Scholar 

  • Grantham JJ, Qualizza PB, Irwin RL (1974) Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am J Physiol 226:191–197

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S, Turner RJ, Silverman M, Rothstein A (1980) Inorganic anion transport in kidney and intestinal brush-border and basolateral membranes. Am J Physiol 238:F452–F460

    CAS  PubMed  Google Scholar 

  • Guder W, Wiesner W, Stukowski B, Wieland O (1971) Metabolism of isolated kidney tubules. Hoppe-Seyler’s Z Physiol Chem 352:1319–1328

    Article  CAS  Google Scholar 

  • Guldberg HC, Ashcroft GW, Crawford TBB (1966) Concentration of 5-hydroxyindolylacetic acid and homovanillic acid in the cerebrospinal fluid of the dog before and during treatment with probenecid. Life Sci 5:1571–1575

    Article  CAS  PubMed  Google Scholar 

  • Häberle DA (1981) Characteristics of p-aminohippurate transport in the mammalian kidney. In: Greger R, Lang F, Silbernagl S (eds) Renal transport of organic substances. Springer Verlag, Heidelberg, pp 189–209

    Chapter  Google Scholar 

  • Hagenbuch B, Stange G, Murer H (1985) Transport of sulphate in rat jejunal and rat proximal tubular basolateral membrane vesicles. Pflügers Arch 405:202–208

    Article  CAS  PubMed  Google Scholar 

  • Hagos Y, Larsen A, Schindelmann S, Burckhardt G, Steffgen J (2001) Protein kinase C mediated down regulation of sodium dicarboxylate cotransporter fNaDC-3. Kidney Blood Press Res 24:351

    Google Scholar 

  • Hagos Y, Bahn A, Asif AR, Krick W, Sendler M, Burckhardt G (2002) Cloning of the pig renal organic anion transporter 1 (pOAT1). Biochimie (in press)

    Google Scholar 

  • Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, Sugiyama Y (2002) Functional involvement of rat organic anion transporter 3 (rOAT3; Slc22a8) in the uptake of organic anions. J Pharmacol Exp Ther 300: 746–753

    Article  CAS  PubMed  Google Scholar 

  • Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78: 1073–1078

    Article  PubMed  Google Scholar 

  • Hierholzer K, Cade R, Gurd R, Kessler R, Pitts R (1960) Stop-flow analysis of renal reabsorption and excretion of sulfate in the dog. Am J Physiol 198:833–837

    Article  CAS  PubMed  Google Scholar 

  • Ho ES, Lin DC, Mendel DB, Cihlar T (2000) Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11:383–393

    Article  CAS  PubMed  Google Scholar 

  • Hohage H, Löhr M, Querl U, Greven J (1994) The renal basolateral transport system for organic anions: properties of the regulation mechanism. J Pharmacol Exp Ther 269:659–664

    CAS  PubMed  Google Scholar 

  • Hosoyamada M, Sekine T, Kanai Y, Endou H (1999) Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol Renal Physiol 276:F122–F128

    Article  CAS  Google Scholar 

  • Huang W, Wang H, Kekuda R, Fei Y-J, Friedrich A, Wang J, Conway SJ, Cameron RS, Leibach FH, Ganapathy V (2000) Transport of N-Acetylaspartate by the Na+-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J Pharmacol Exp Ther 295:392–403

    CAS  PubMed  Google Scholar 

  • Inui K-I, Masuda S, Saito H (2000) Cellular and molecular aspects of drug transport in the kidney. Kidney Int 58:944–958

    Article  CAS  PubMed  Google Scholar 

  • Islinger F, Gekle M, Wright SH (2001) Interaction of 2,3-dimercapto-1-propane sulfonate with the human organic anion transporter hOAT1. J Pharmacol Exp Ther 299:741–747

    CAS  PubMed  Google Scholar 

  • Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, Endou H (1999) The interaction and transport of β-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther 290:672–677

    CAS  PubMed  Google Scholar 

  • Jørgensen KE, Kragh-Hansen U, Roigaard-Petersen H, Sheikh MI (1983) Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am J Physiol 244:F686–F695

    PubMed  Google Scholar 

  • Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, Hosoyamada M, Cha SH, Sekine T (2001) Characterization of ochratoxin A transport by human organic anion transporters. Life Sci 69:2123–2135

    Article  CAS  PubMed  Google Scholar 

  • Karniski LP, Lötscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol Renal Physiol 275:F79–F87

    Article  CAS  Google Scholar 

  • Kekuda R, Wang H, Huang W, Pajor AM, Leibach FH, Devoe LD, Prasad PD, Ganapathy V (1999) Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem 274: 3422–3429

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H (2002) Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther 301:293–298

    Article  CAS  PubMed  Google Scholar 

  • Knauf H, Mutschler E (2000) Renal elimination of drugs. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Lippincott Williams & Wilkins, Philadelphia, pp 2861–2875

    Google Scholar 

  • Kobayashi A, Hirokawa N, Ohshiro N, Sekine T, Sasaki T, Tokuyama S, Endou H, Yamamoto T (2002a) Differential gene expression of organic anion transporters in male and female rats. Biochem Biophys Res Commun 290:482–487

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ohshiro N, Shibusawa A, Sasaki T, Tokuyama S, Sekine T, Endou H, Yamamoto T (2002b) Isolation, characterization and differential gene expression of multispecific organic anion transporter 2 in mice. Mol Pharmacol 62:7–14

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H, Gorboulev V, Arndt P (1999) Molecular pharmacology of organic cation transporters in kidney. J Membr Biol 167:103–117

    Article  CAS  PubMed  Google Scholar 

  • Kojima R, Sekine T, Kawachi M, Cha SH, Suzuki Y, Endou H (2002) Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J Am Soc Nephrol 13:848–857

    Article  CAS  PubMed  Google Scholar 

  • Kok LDS, Siu SS, Fung KP, Tsui SKW, Lee CY, Waye MMY (2000) Assignment of liver-specific organic anion transporter (SLC22A7) to human chromosome 6 bands p21.2 → p21.1 using radiation hybrids. Cytogenet Cell Genet 88:76–77

    Article  CAS  PubMed  Google Scholar 

  • König J, Nies AT, Cui Y, Leier I, Keppler D (1999) Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1461:377–394

    Article  PubMed  Google Scholar 

  • Krick W, Wolff NA, Burckhardt G (2000) Voltage-driven p-aminohippurate, chloride, and urate transport in porcine renal brush-border membrane vesicles. Pflügers Arch Eur J Physiol 441:125–132

    Article  CAS  Google Scholar 

  • Kuo S-M, Aronson PS (1988) Oxalate transport via the sulfate/HCO3-exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 263:9710–9717

    Article  CAS  PubMed  Google Scholar 

  • Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, Sugiyama Y, Kanai Y, Endou H (1999) Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem 274:13675–13680

    Article  CAS  PubMed  Google Scholar 

  • Kuze K, Graves P, Leahy A, Wilson P, Stuhlmann H, You G (1999) Heterologous expression and functional characterization of a mouse renal organic anion transporter in mammalian cells. J Biol Chem 274:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Laskin OL, De Miranda P, King DH, Page DA, Longstreth JA, Rocco L, Lietman PS (1982) Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother 21:804–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal-Pinto E, Tao WJ, Rappaport J, Richardson M, Knorr BA, Abramson RG (1997) Molecular cloning and functional reconstitution of a urate transporter/channel. J Biol Chem 272:617–625

    Article  CAS  PubMed  Google Scholar 

  • Leal-Pinto E, Cohen BE, Lipkowitz MS, Abramson RG (2002) Functional analysis and molecular model of the human urate transporter/channel, hUAT. Am J Physiol Renal Physiol 283:F150–F163

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Beck L, Brown RJ, Markovich D (1999) Identification of a mammalian brain sulfate transporter. Biochem Biophys Res Commun 263:123–129

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Beck L, Markovich D (2000) The human renal Na+-sulfate cotransporter (SLC3A1; hNaSi-1) cDNA and gene: organization, chromosomal localization and functional characterization. Genomics 70:354–363

    Article  CAS  PubMed  Google Scholar 

  • Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D (2000) ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int 57:1636–1642

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Nieto CE, You GF, Bush KT, Barros EJG, Beier DR, Nigam SK (1997) Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem 272:6471–6478

    Article  CAS  PubMed  Google Scholar 

  • Löw I, Friedrich T, Burckhardt G (1984) Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol 246:F334–F342

    PubMed  Google Scholar 

  • Lu R, Chan BS, Schuster VL (1999) Cloning of the human kidney PAH transporter: narrow substrate specificity and regulation by protein kinase C. Am J Physiol Renal Physiol 276:F295–F303

    Article  CAS  Google Scholar 

  • Lücke H, Stange G, Murer H (1980) Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex. Biochem J 182:223–229

    Article  Google Scholar 

  • Maiorino RM, Aposhian MM, Xu Z-F, Li Y, Polt RL, Aposhian HV (1993) Determination and metabolism of dithiol chelating agents. XV. The meso-2,3-dimercaptosuccinic acid-cysteine (1:2) mixed disulfide, a major urinary metabolity of DMSA in the human, increases the urinary excretion of lead in the rat. J Pharmacol Exp Ther 267:1221–1226

    CAS  PubMed  Google Scholar 

  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81: 1499–1533

    Article  CAS  PubMed  Google Scholar 

  • Markovich D, Regeer RR (1999) Expression of membrane transporters in cane toad bufo marinus oocytes. J Exp Biol 202:2217–2223

    Article  CAS  PubMed  Google Scholar 

  • Markovich D, Forgo J, Stange G, Biber J, Murer H (1993) Expression cloning of rat renal Na+/SO42-cotransport. Proc Natl Acad Sci U S A 90:8073–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markovich D, Bissig M, Sorribas V, Hagenbuch B, Meier PJ, Murer H (1994) Expression of rat renal sulfate transport systems in Xenopus laevis oocytes: functional characterization and molecular identification. J Biol Chem 269:3022–3026

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Ferrier B, Baverel G (1989) Transport and utilization of a-ketoglutarate by the rat kidney in vivo. Pflügers Arch 413:217–224

    Article  CAS  PubMed  Google Scholar 

  • Mays DC, Dixon KF, Balboa A, Pawluk LJ, Bauer MR, Nawoot S, Gerber N (1991) A nonprimate animal model applicable to zidovudine pharmacokinetics in humans: inhibition of glucuronidation and renal excretion of zidovudine by probenecid in rats. J Pharmacol Exp Ther 259:1261–1270

    CAS  PubMed  Google Scholar 

  • Miller DS (1998) Protein kinase C regulation of organic anion transport in renal proximal tubule. Am J Physiol Renal Physiol 274:F156–F164

    Article  CAS  Google Scholar 

  • Morita N, Kusuhara H, Sekine T, Endou H, Sugiyama Y (2001) Functional characterization of rat organic anion transporter 2 in LLC-PK1 cells. J Pharmacol Exp Ther 298:1179–1184

    CAS  PubMed  Google Scholar 

  • Morris ME, Murer H (2001) Molecular mechanisms in renal and intestinal sulfate (re)absorption. J Membr Biol 181:1–9

    Article  CAS  PubMed  Google Scholar 

  • Moseley RH, Höglund P, Wu GD, Silberg DG, Haila S, de la Chapelle A, Holmberg C, Kere J (1999) Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am J Physiol Gastrointest Liver Physiol 276:G185–G192

    Article  CAS  Google Scholar 

  • Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K-I (2002) Gene expression levels and immunolocalization of organic ion transporters in human kidney. J Am Soc Nephrol 13: 866–874

    Article  CAS  PubMed  Google Scholar 

  • Motojima K, Hosokawa A, Yamato H, Muraki T, Yoshioka T (2002) Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br J Pharmac 135:555–563

    Article  CAS  Google Scholar 

  • Mulato AS, Ho ES, Cihlar T (2000) Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther 295: 10–15

    CAS  PubMed  Google Scholar 

  • Nagai J, Yano I, Hashimoto Y, Takano M, Inui K-I (1997) Inhibition of PAH transport by parathyroid hormone in OK cells: involvement of protein kinase C pathway. Am J Physiol Renal Physiol 273:F674–F679

    Article  CAS  Google Scholar 

  • Nagata Y, Kusuhara H, Endou H, Sugiyama Y (2002) Expression and functional characterization of rat organic anion transporter 3 (rOAT3) in the choroid plexus. Mol Pharmacol 61:982–988

    Article  CAS  PubMed  Google Scholar 

  • Nakajima N, Sekine T, Cha SH, Tojo A, Hosoyamada M, Kanai Y, Yan K, Awa S, Endou H (2000) Developmental changes in multispecific organic anion transporter 1 expression in rat kidney. Kidney Int 57:1608–1616

    Article  CAS  PubMed  Google Scholar 

  • Nierenberg DW (1987) Drug inhibition of penicillin tubular secretion: concordance between in vitro and clinical findings. J Pharmacol Exp Ther 240:712–716

    CAS  PubMed  Google Scholar 

  • Nieth H, Schollmeyer P (1966) Substrate-utilization of the human kidney. Nature 209:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Okusa MD, Ellison DH (2000) Physiology and pathophysiology of diuretic action. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Lippincott Williams & Wilkins, Philadelphia, pp 2877–2922

    Google Scholar 

  • Pajor AM (1995) Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem 270:5779–5785

    Article  CAS  PubMed  Google Scholar 

  • Pajor AM (1996) Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol Renal Physiol 270:F642–F648

    Article  CAS  Google Scholar 

  • Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682

    Article  CAS  PubMed  Google Scholar 

  • Pajor AM (2000) Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol 175:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pajor AM, Sun N (1999) Protein kinase C-mediated regulation of the renal Na+/dicarboxylate cotransporter, NaDC-1. Biochim Biophys Acta 1420:223–230

    Article  CAS  PubMed  Google Scholar 

  • Pajor AM, Sun NN (2000) Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Am J Physiol Renal Physiol 279:F482–F490

    Article  CAS  PubMed  Google Scholar 

  • Pajor AM, Gangula R, Yao X (2001) Cloning and functional characterization of a high-affinity Na+/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol 280:C1215–C1223

    Article  CAS  PubMed  Google Scholar 

  • Pao SS, Paulsen IT, Saier MHJr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlova A, Sakurai H, Leclercq B, Beier DR, Yu ASL, Nigam SK (2000) Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol 278:F635–F643

    Article  CAS  PubMed  Google Scholar 

  • Pombrio JM, Giangreco A, Li L, Wempe MF, Anders MW, Sweet DH, Pritchard JB, Ballatori N (2001) Mercapturic acids (N-acetylcysteine S-conjugates) as endogenous substrates for the renal organic anion transporter-1. Mol Pharmacol 60:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JB (1988) Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles. Am J Physiol Renal Physiol 255:F597–F604

    Article  CAS  Google Scholar 

  • Pritchard JB (1995) Intracellular a-ketoglutarate controls the efficacy of renal organic anion transport. J Pharmacol Exp Ther 274:1278–1284

    CAS  PubMed  Google Scholar 

  • Pritchard JB, Miller DS (1993) Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev 73:765–796

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JB, Renfro JL (1983) Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci U S A 80:2603–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Race JE, Grassl SM, Williams WJ, Holtzman EJ (1999) Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 255:508–514

    Article  CAS  PubMed  Google Scholar 

  • Reid G, Wolff NA, Dautzenberg FM, Burckhardt G (1998) Cloning of a human renal p-aminohippurate transporter, hROAT1. Kidney Blood Press Res 21:233–237

    Article  CAS  PubMed  Google Scholar 

  • Renfro JL, Pritchard JB (1982) H+-dependent sulfate secretion in the marine teleost renal tubule. Am J Physiol 243:F150–F159

    CAS  PubMed  Google Scholar 

  • Renfro JL, Clark NB, Metts RE, Lynch MA (1987) Sulfate transport by chick renal tubule brush-border and basolateral membranes. Am J Physiol Regul Integr Comp Physiol 252:R85–R93

    Article  CAS  Google Scholar 

  • Rocchiccioli F, Leroux JP, Cartier PH (1984) Microdetermination of 2-ketoglutaric acid in plasma and cerebrospinal fluid by capillary gas chromatography mass spectrometry: application to pediatrics. Biomed Mass Spectrom 11: 24–28

    Article  CAS  PubMed  Google Scholar 

  • Röver N, KrÉmer C, Stärk U, Gabriëls G, Greven J (1998) Basolateral transport of glutarate in proximal S2 segments of rabbit kidney: kinetics of the uptake process and effect of activators of protein kinase A and C. Pflügers Arch 436:423–428

    Article  PubMed  Google Scholar 

  • Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    Article  CAS  PubMed  Google Scholar 

  • Sauvant C, Holzinger H, Gekle M (2001) Modulation of the basolateral and apical step of transepithelial organic anion secretion in proximal tubular opossum kidney cells. J Biol Chem 276:14695–14703

    Article  CAS  PubMed  Google Scholar 

  • Schaub TP, Kartenbeck J, König J, Vogel O, Witzgall R, Kriz W, Keppler D (1997) Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J Am Soc Nephrol 8:1213–1221

    Article  CAS  PubMed  Google Scholar 

  • Schaub TP, Kartenbeck J, König J, Spring H, Dörsam J, Staehler G, Störkel S, Thon WF, Keppler D (1999) Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma. J Am Soc Nephrol 10:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Schild L, Roch-Ramel F (1988) Transport of salicylate in proximal tubule (S2 segment) isolated from rabbit kidney. Am J Physiol 254:F554–F561

    CAS  PubMed  Google Scholar 

  • Schneider EG, Durham JC, Sacktor B (1984) Sodium-dependent transport of inorganic sulfate by rabbit renal brush-border membrane vesicles. J Biol Chem 259:14591–14599

    Article  CAS  PubMed  Google Scholar 

  • Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H (1997) Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem 272:18526–18529

    Article  CAS  PubMed  Google Scholar 

  • Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarashi T, Endou H (1998a) Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol Renal Physiol 275:F289–F305

    Article  Google Scholar 

  • Sekine T, Cha SH, Tsuda M, Apiwattanakul N, Nakajima N, Kanai Y, Endou H (1998b) Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett 429:179–182

    Article  CAS  PubMed  Google Scholar 

  • Sheikh MI, Kragh-Hansen U, Jørgensen KE, Roigaard-Petersen H (1982) An efficient method for the isolation and separation of basolateral-membrane and luminal-membrane vesicles from rabbit kidney cortex. Biochem J 208: 377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan E, Rumrich G, Ullrich KJ (1983) Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney. Pflügers Arch 399:18–28

    Article  CAS  PubMed  Google Scholar 

  • Shimada H, Burckhardt G (1986) Kinetic studies of sulfate transport in basolateral membrane vesicles from rat renal cortex. Pflügers Arch 407:S160–S167

    Article  CAS  PubMed  Google Scholar 

  • Shimada H, Moewes B, Burckhardt G (1987) Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles. Am J Physiol Renal Physiol 253:F795–F801

    Article  CAS  Google Scholar 

  • Simonson GD, Iwanij V (1995) Genomic organization and promoter sequence of a gene encoding a rat liver-specific type-I transport protein. Gene 154:243–247

    Article  CAS  PubMed  Google Scholar 

  • Simonson GD, Vincent AC, Roberg KJ, Huang Y, Iwanij V (1994) Molecular cloning and characterization of a novel liver-specific transport protein. J Cell Sci 107:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Simpson DP (1983) Citrate excretion: a window on renal metabolism. Am J Physiol 244:F223–F234

    CAS  PubMed  Google Scholar 

  • Smith HW, Finkelstein H, Aliminosa L, Crawford B, Graber M (1945) The renal clearance of substituted hippuric acid derivatives and other aromatic acid in the dog and man. J Clin Invest 24:388–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffgen J, Burckhardt BC, Langenberg C, Kühne L, Müller GA, Burckhardt G, Wolff NA (1999) Expression cloning and characterization of a novel sodium-dicarboxylate cotransporter from winter flounder kidney. J Biol Chem 274:20191–20196

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Sugiyama Y (2001) Characterization of the efflux transport of 17β-estradiol-D-17β-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther 298:316–322

    CAS  PubMed  Google Scholar 

  • Sun W, Wu RR, van Poelje PD, Erion MD (2001) Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun 283:417–422

    Article  CAS  PubMed  Google Scholar 

  • Sweet DH, Pritchard JB (1999) The molecular biology of renal organic anion and organic cation transporters. Cell Biochem Biophys 31:89–118

    Article  CAS  PubMed  Google Scholar 

  • Sweet DH, Wolff NA, Pritchard JB (1997) Expression cloning and characterization of ROAT1. J Biol Chem 272: 30088–30095

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Nagai J, Yasuhara M, Inui K-I (1996) Regulation of p-aminohippurate transport by protein kinase C in OK kidney epithelial cells. Am J Physiol 271:F469–F475

    CAS  PubMed  Google Scholar 

  • Takeda M, Tojo A, Sekine T, Hosoyamada M, Kanai Y, Endou H (1999) Role of organic anion transporter 1 (OAT1) in cephaloridine (CER)-induced nephrotoxicity. Kidney Int 56:2128–2136

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Hosoyamada M, Cha SH, Sekine T, Endou H (2000a) Hydrogen peroxide downregulates human organic anion transporters in the basolateral membrane of the proximal tubule. Life Sci 68:679–687

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Sekine T, Endou H (2000b) Regulation by protein kinase C of organic anion transport driven by rat organic anion transporter 3 (rOAT3). Life Sci 67:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H (2001) Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol 419:113–120

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Babu E, Narikawa S, Endou H (2002a) Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol 438:137–142

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Endou H (2002b) Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 300:918–924

    Article  CAS  PubMed  Google Scholar 

  • Talor Z, Gold RM, Yang W-C, Arruda JAL (1987) Anion exchanger is present in both luminal and basolateral renal membranes. Eur J Biochem 164:695–702

    Article  CAS  PubMed  Google Scholar 

  • Tanner GA, Isenberg MT (1970) Secretion of p-aminohippurate by rat kidney proximal tubules. Am J Physiol 219:889–892

    CAS  PubMed  Google Scholar 

  • Tojo A, Sekine T, Nakajima N, Hosoyamada M, Kanai Y, Kimura K, Endou H (1999) Immunohistochemical localization of multispecific renal organic anion transporter 1 in rat kidney. J Am Soc Nephrol 10:464–471

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Sekine T, Takeda M, Cha SH, Kanai Y, Kimura M, Endou H (1999) Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther 289:1301–1305

    CAS  PubMed  Google Scholar 

  • Tune BM (1997) Nephrotoxicity of beta-lactam antibiotics: mechanisms and strategies for prevention. Pediatr Nephrol 11:768–772

    Article  CAS  PubMed  Google Scholar 

  • Tune BM, Burg MB, Patlak CS (1969) Characteristics of p-aminohippurate transport in proximal renal tubules. Am J Physiol 217:1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ (1984) Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am J Physiol 247:F793–F798

    CAS  PubMed  Google Scholar 

  • Uchino H, Tamai I, Yamashita K, Minemoto Y, Sai Y, Yabuuchi H, Miyamoto K, Takeda E, Tsuji A (2000) p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun 270:254–259

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ (1994) Specificity of transporters for ‘organic anions’ and ‘organic cations’ in the kidney. Biochim Biophys Acta 1197:45–62

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ (1997) Renal transporters for organic anions and organic cations. Structural requirements for substrates. J Membr Biol 158:95–107

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ (1998) Features of substrates for interaction with renal transporters of organic anions and cations. Nova Acta Leopoldina 78:23–34

    CAS  Google Scholar 

  • Ullrich KJ (1999) Affinity of drugs to the different renal transporters for organic anions and organic cations. In: Amidon GL, Sadée W (eds) Membrane transporters as drug targets. Kluwer Academic/Plenum Publishers, New York, pp 159–179

    Google Scholar 

  • Ullrich KJ, Rumrich G (1988) Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am J Physiol Renal Physiol 254:F453–F462

    Article  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G (1990) Contraluminal renal anion and cation transport systems: interaction with fatty acids, eicosanoids, Krebs cycle intermediates, amino acids and analogues, cyclic nucleotides and steroid hormones. In: Berliner RW (ed) The frontiers of nephrology. Elsevier Science Publishers B.V., Amsterdam, pp 55–65

    Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1980) Active sulfate reabsorption in the proximal convolution of the rat kidney: specificity, Na+ and HCO3-dependence. Pflügers Arch 383:159–163

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Fasold H, Rumrich G, Klöss S (1984a) Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflügers Arch 400:241–249

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1984b) Contraluminal sulfate transport in the proximal tubule of the rat kidney. 1. Kinetics, effects of K+, Na+, Ca2+, H+, and anions. Pflügers Arch 402:264–271

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1985a) Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: sulfate-esters, sulfonates and amino sulfonates. Pflügers Arch 404:293–299

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1985b) Contraluminal sulfate transport in the proximal tubule of the rat kidney. III. Specificity: disulfonates, di-and tri-carboxylates and sulfocarboxylates. Pflügers Arch 404: 300–306

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1985c) Contraluminal sulfate transport in the proximal tubule of the rat kidney. IV. Specificity: salicylate analogs. Pflügers Arch 404:307–310

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S, Lang H-J (1985d) Contraluminal sulfate transport in the proximal tubule of the rat kidney. V. Specificity: phenolphthaleins, sulfonphthaleins, and other sulfo dyes, sulfamoyl-compounds and diphenylamine-2-carboxylates. Pflügers Arch 404:311–318

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987a) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions, and capillary preperfusion. Pflügers Arch 409:229–235

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987b) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: aliphatic dicarboxylic acids. Pflügers Arch 408: 38–45

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1987c) Contraluminal para-aminohippurate transport in the proximal tubule of the rat kidney. III. Specificity: monocarboxylic acids. Pflàgers Arch 409:547–554

    Article  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1988) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. IV. Specificity: mono-and polysubstituted benzene analogs. Pflögers Arch 413: 134–146

    Article  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1989a) Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl-and phenoxy diuretics, and with β-lactam antibiotics. Kidney Int 36:78–88

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Wieland T, Dekant W (1989b) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. VI. Specificity: amino acids, their N-methyl-, N-acetyl-and N-benzoyl derivatives, glutathione-and cysteine conjugates, di-and oligopeptides. Pflügers Arch 415:342–350

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Gemborys M, Dekant W (1990) Transformation and transport: how does metabolic transformation change the affinity of substrates for the renal contraluminal anion and cation transporters? Toxicol Lett 53: 19–27

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Gemborys MW, Dekant W (1991a) Renal transport and nephrotoxicity. In: Bach PH, Gregg NJ, Wilks MF, Delacruz L (eds) Nephrotoxicity. Marcel Dekker, New York, pp 1–8

    Google Scholar 

  • Ullrich KJ, Rumrich G, Papavassiliou F, Klöss S, Fritzsch G (1991b) Contraluminal p-aminohippurate transport in the proximal tubule of the rat kidney. VII. Specificity: cyclic nucleotides, eicosanoids. Pflügers Arch 418:360–370

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Papavassiliou F, Hierholzer K (1991c) Contraluminal p-aminohippurate transport in the proximal tubule of the rat kidney. VIII. Transport of corticosteroids. Pflügers Arch 418:371–382

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, David C, Fritzsch G (1993a) Bisubstrates: substances that interact with renal contraluminal organic anion and organic cation transport systems. I. Amines, piperidines, piperazines, azepines, pyridines, quinolines, imidazoles, thiazoles, guanidines and hydrazines. Pflügers Arch 425:280–299

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, David C, Fritzsch G (1993b) Bisubstrates: substances that interact with both renal contraluminal organic anion and organic cation transport systems. II. Zwitterionic substrates: dipeptides, cephalosporins, quinolone-carboxylate gyrase inhibitors and phosphamide thiazine carboxylates. Nonionizable substrates: steroid hormones and cyclophosphamides. Pflügers Arch 425:300–312

    Article  CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, David C, Fritzsch G (1993c) Interaction of xenobiotics with organic anion and cation transport systems in renal proximal tubule cells. In: Anders MW, Dekant W, Henschler D, Oberleithner H, Silbernagl S (eds) Renal disposition and nephrotoxicity of xenobiotics. Academic Press, San Diego, pp 97–115

    Google Scholar 

  • Ullrich KJ, Fritzsch G, Rumrich G, David C (1994) Polysubstrates: substances that interact with renal contraluminal PAH, sulfate, and NMeN transport: sulfamoyl-, sulfonylurea-, thiazide-and benzenaminocarboxylate (nicotinate) compounds. J Pharmacol Exp Ther 269:684–692

    CAS  PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Burke TR, Shirazi-Beechey SP, Lang HJ (1997) Interaction of alkyl/arylphosphonates, phosphonocarboxylates and diphosphonates with different anion transport systems in the proximal renal tubule. J Pharmacol Exp Ther 283:1223–1229

    CAS  PubMed  Google Scholar 

  • Uwai Y, Okuda M, Takami K, Hashimoto Y, Inui K-I (1998) Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett 438: 321–324

    Article  CAS  PubMed  Google Scholar 

  • Uwai Y, Saito H, Hashimoto Y, Inui K-I (2000) Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther 295:261–265

    CAS  PubMed  Google Scholar 

  • Van Aubel RAMH, Peters JGP, Masereeuw R, van Os CH, Russel FGM (2000) Multidrug resistance protein Mrp2 mediates ATP-dependent transport of classical renal organic anion p-aminohippurate. Am J Physiol Renal Physiol 279:F713–F717

    Article  PubMed  Google Scholar 

  • Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y, Endou H (2000) Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther 294: 844–849

    CAS  PubMed  Google Scholar 

  • Walker RJ (2000) Cellular mechanisms of drug nephrotoxicity. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Lippincott Williams & Wilkins, Philadelphia, pp 2835–2860

    Google Scholar 

  • Wang H, Fei Y-J, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (2000) Structure, function, and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol 278:C1019–C1030

    Article  CAS  PubMed  Google Scholar 

  • Wolff NA, Werner A, Burkhardt S, Burckhardt G (1997) Expression cloning and characterization of a renal organic anion transporter from winter flounder. FEBS Lett 417:287–291

    Article  CAS  PubMed  Google Scholar 

  • Wolff NA, Grünwald B, Friedrich B, Lang F, Godehardt S, Burckhardt G (2001) Mutational analysis of fROAT, the flounder renal organic anion transporter. J Am Soc Nephrol 12:2012–2018

    Article  CAS  PubMed  Google Scholar 

  • Wolff NA, Thies K, Friedrich B, Lang F, Reid G, Burckhardt G (2002) PKC-regulation of hOAT1 leads to internalization of the carrier and is independent of several conserved OAT1 PKC consensus sites. Pflügers Arch 443:S357

    Google Scholar 

  • Woodhall PB, Tisher CC, Simonton CA (1978) Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. J Clin Invest 61:1320–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright EM, Wright SH, Hirayama B, Kippen I (1982) Interactions between lithium and renal transport of Krebs cycle intermediates. Proc Natl Acad Sci U S A 79:7514–7517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SH, Kippen I, Klinenberg JR, Wright EM (1980) Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush border. J Membr Biol 57:73–82

    Article  CAS  PubMed  Google Scholar 

  • Wright SH, Kippen I, Wright EM (1982) Stoichiometry of Na+-succinate cotransport in renal brush border membranes. J Biol Chem 157:1773–1778

    Article  Google Scholar 

  • Yarchoan R, Mitsuya H, Myers CE, Broder S (1989) Clinical pharmacology of 3′-azido-2′,3′-dideoxythymidine (zidovudine) and related dideoxynucleosides. N Eng J Med 321:726–738

    Article  CAS  Google Scholar 

  • You G, Kuze K, Kohanski RA, Amsler K, Henderson S (2000) Regulation of mOAT-mediated organic anion transport by ocadaic acid and protein kinase C in LLC-PK1 cells. J Biol Chem 275:10278–10284

    Article  CAS  PubMed  Google Scholar 

  • Zalups RK (1993) Influence of 2,3-dimercaptopropane-1-sulfonate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the renal disposition of mercury in normal and uninephrectomized rats exposed to inorganic mercury. J Pharmacol Exp Ther 267:791–800

    CAS  PubMed  Google Scholar 

  • Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    CAS  PubMed  Google Scholar 

  • Zhang FF, Pajor AM (2001) Topology of the Na+/dicarboxylate cotransporter: the N-terminus and hydrophilic loop 4 are located intracellularly. Biochim Biophys Acta 1511:80–89

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Burckhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Burckhardt, B.C., Burckhardt, G. (2003). Transport of organic anions across the basolateral membrane of proximal tubule cells. In: Amara, S.G., et al. Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-002-0003-8

Download citation

  • DOI: https://doi.org/10.1007/s10254-002-0003-8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00228-4

  • Online ISBN: 978-3-540-36207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics