Skip to main content

Hsp70 and Hsp90—a relay team for protein folding

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 151))

Abstract

Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

TPR:

Tetratricopeptide repeat

Hsp70:

Heat shock protein 70

yHsp70:

Yeast heat shock protein 70

Hsp90:

Heat shock protein 90

yHsp90:

Yeast heat shock protein 90

hHsp90:

Human heat shock protein 90

SHR:

Steroid hormone receptor

GA:

Geldanamycin

GR:

Glucocorticoid receptor

PR:

Progesterone receptor

ER:

Endoplasmic reticulum

DSG:

15-Deoxyspergualin

GR-LBD:

Glucocorticoid receptor ligand binding domain

References

  • Abbas-Terki T, Picard D (1999) Alpha-complemented beta-galactosidase. An in vivo model substrate for the molecular chaperone heat-shock protein 90 in yeast. Eur J Biochem 266:517–523

    PubMed  CAS  Google Scholar 

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    PubMed  CAS  Google Scholar 

  • Adkins B, Hunter T, Sefton BM (1982) The transforming proteins of PRCII virus and Rous sarcoma virus form a complex with the same two cellular phosphoproteins. J Virol 43:448–455

    PubMed  CAS  Google Scholar 

  • Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114:2491–2499

    PubMed  CAS  Google Scholar 

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    PubMed  CAS  Google Scholar 

  • Aligue R, Akhavan-Niak H, Russell P (1994) A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J 13:6099–6106

    PubMed  CAS  Google Scholar 

  • An WG, Schulte TW, Neckers LM (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11: 355–360

    PubMed  CAS  Google Scholar 

  • Arbeitman MN, Hogness DS (2000) Molecular chaperones activate the Drosophila ecdysone receptor, an RXR heterodimer. Cell 101:67–77

    PubMed  CAS  Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    PubMed  CAS  Google Scholar 

  • Ban C, Yang W (1998) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541–552

    PubMed  CAS  Google Scholar 

  • Banecki B, Zylicz M (1996) Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action. J Biol Chem 271:6137–6143

    PubMed  CAS  Google Scholar 

  • Banumathy G, Singh V, Tatu U (2002) Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 277:3902–3912

    PubMed  CAS  Google Scholar 

  • Bardwell JC, Craig EA (1988) Ancient heat shock gene is dispensable. J Bacteriol 170:2977–2983

    PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    PubMed  CAS  Google Scholar 

  • Bell S, Klein C, Muller L, Hansen S, Buchner J (2002) p53 contains large unstructured regions in its native state. J Mol Biol 322:917–927

    PubMed  CAS  Google Scholar 

  • Ben Or S (1989) Evidence that 5 S intermediate state in glucocorticoid receptor transformation contains hsp90 in addition to the steroid-binding protein. J Steroid Biochem 33:899–906

    CAS  Google Scholar 

  • Benaroudj N, Batelier G, Triniolles F, Ladjimi MM (1995) Self-association of the molecular chaperone HSC70. Biochemistry 34:15282–15290

    PubMed  CAS  Google Scholar 

  • Bender AT, Silverstein AM, Demady DR, Kanelakis KC, Noguchi S, Pratt WB, Osawa Y (1999) Neuronal nitric-oxide synthase is regulated by the Hsp90-based chaperone system in vivo. J Biol Chem 274:1472–1478

    PubMed  CAS  Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417

    PubMed  CAS  Google Scholar 

  • Bergmann JE, Lodish HF (1979) A kinetic model of protein synthesis. Application to hemoglobin synthesis and translational control. J Biol Chem 254:11927–11937

    PubMed  CAS  Google Scholar 

  • Bernstein SL, Russell P, Wong P, Fishelevich R, Smith LE (2001) Heat shock protein 90 in retinal ganglion cells: association with axonally transported proteins. Vis Neurosci 18:429–436

    PubMed  CAS  Google Scholar 

  • Bijlmakers MJ, Marsh M (2000) Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck). Mol Biol Cell 11:1585–1595

    PubMed  CAS  Google Scholar 

  • Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141

    PubMed  CAS  Google Scholar 

  • Bimston D, Song J, Winchester D, Takayama S, Reed JC, Morimoto RI (1998) BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J 17:6871–6878

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Toretsky J, Bohen S, Neckers L (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci 93:8379–8383

    PubMed  CAS  Google Scholar 

  • Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ (1993a) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728

    PubMed  CAS  Google Scholar 

  • Blond-Elguindi S, Fourie AM, Sambrook JF, Gething MJ (1993b) Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J Biol Chem 268:12730–12735

    PubMed  CAS  Google Scholar 

  • Bogatcheva NV, Ma Y, Urosev D, Gusev NB (1999) Localization of calponin binding sites in the structure of 90-kDa heat shock protein (Hsp90). FEBS Lett 457:369–374

    PubMed  CAS  Google Scholar 

  • Bohen SP (1998) Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins. Mol Cell Biol 18:3330–3339

    PubMed  CAS  Google Scholar 

  • Bolliger L, Deloche O, Glick BS, Georgopoulos C, Jeno P, Kronidou N, Horst M, Morishima N, Schatz G (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J 13:1998–2006

    PubMed  CAS  Google Scholar 

  • Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    PubMed  CAS  Google Scholar 

  • Bose S, Weikl T, Bugl H, Buchner J (1996) Chaperone function of Hsp90-associated proteins. Science 274: 1715–1717

    PubMed  CAS  Google Scholar 

  • Brehmer D, Rudiger S, Gassler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 8:427–432

    PubMed  CAS  Google Scholar 

  • Brodsky JL (1999) Selectivity of the molecular chaperone-specific immunosuppressive agent 15-deoxyspergualin: modulation of Hsc70 ATPase activity without compromising DnaJ chaperone interactions. Biochem Pharmacol 57: 877–880

    PubMed  CAS  Google Scholar 

  • Brugge JS (1986) Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp50 and pp90. Curr Top Microbiol Immunol 123:1–22

    PubMed  CAS  Google Scholar 

  • Brugge JS, Erikson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269:346–348

    PubMed  CAS  Google Scholar 

  • Brugge JS, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25:363–372

    PubMed  CAS  Google Scholar 

  • Bruneau N, Lombardo D, Bendayan M (1998) Participation of GRP94-related protein in secretion of pancreatic bile salt-dependent lipase and in its internalization by the intestinal epithelium. J Cell Sci 111(Pt 17): 2665–2679

    PubMed  CAS  Google Scholar 

  • Buchberger A, Schroder H, Hesterkamp T, Schonfeld HJ, Bukau B (1996) Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol 261:328–333

    PubMed  CAS  Google Scholar 

  • Buchner J (1999) Hsp90 & Co.-a holding for folding. Trends Biochem Sci 24:136–141

    PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    PubMed  CAS  Google Scholar 

  • Busconi L, Guan J, Denker BM (2000) Degradation of heterotrimeric Galpha(o) subunits via the proteosome pathway is induced by the hsp90-specific compound geldanamycin. J Biol Chem 275:1565–1569

    PubMed  CAS  Google Scholar 

  • Carrello A, Ingley E, Minchin RF, Tsai S, Ratajczak T (1999) The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90. J Biol Chem 274: 2682–2689

    PubMed  CAS  Google Scholar 

  • Catelli MG, Binart N, Jung-Testas I, Renoir JM, Baulieu EE, Feramisco JR, Welch WJ (1985) The common 90-kd protein component of nontransformed ‘8S’ steroid receptors is a heat-shock protein. EMBO J 4: 3131–3135

    PubMed  CAS  Google Scholar 

  • Chadli A, Bouhouche I, Sullivan W, Stensgard B, McMahon N, Catelli MG, Toft DO (2000) Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc Natl Acad Sci 97:12524–12529

    PubMed  CAS  Google Scholar 

  • Chang GC, Liu R, Panniers R, Li GC (1994) Rat fibroblasts transfected with the human 70-kDa heat shock gene exhibit altered translation and eukaryotic initiation factor 2 alpha phosphorylation following heat shock. Int J Hyperthermia 10:325–337

    PubMed  CAS  Google Scholar 

  • Chang HC, Lindquist S (1994) Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J Biol Chem 269:24983–24988

    PubMed  CAS  Google Scholar 

  • Chang HC, Nathan DF, Lindquist S (1997) In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol Cell Biol 17:318–325

    PubMed  CAS  Google Scholar 

  • Chavany C, Mimnaugh E, Miller P, Bitton R, Nguyen P, Trepel J, Whitesell L, Schnur R, Moyer J, Neckers L (1996) p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J Biol Chem 271:4974–4977

    PubMed  CAS  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    PubMed  CAS  Google Scholar 

  • Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH (1996a) A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 16: 4691–4699

    PubMed  CAS  Google Scholar 

  • Chen S, Prapapanich V, Rimerman RA, Honore B, Smith DF (1996b) Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70. Mol Endocrinol 10:682–693

    PubMed  CAS  Google Scholar 

  • Chen S, Sullivan WP, Toft DO, Smith DF (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3:118–129

    PubMed  CAS  Google Scholar 

  • Chiosis G, Huezo H, Rosen N, Mimnaugh E, Whitesell L, Neckers L (2003) 17AAG: low target binding affinity and potent cell activity-finding an explanation. Mol Cancer Ther 2:123–129

    PubMed  CAS  Google Scholar 

  • Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19:4125–4133

    PubMed  CAS  Google Scholar 

  • Compton JL, McCarthy BJ (1978) Induction of the Drosophila heat shock response in isolated polytene nuclei. Cell 14:191–201

    PubMed  CAS  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The cochaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    PubMed  CAS  Google Scholar 

  • Courtneidge SA, Bishop JM (1982) Transit of pp60v-src to the plasma membrane. Proc Natl Acad Sci 79: 7117–7121

    PubMed  CAS  Google Scholar 

  • Crevel G, Bates H, Huikeshoven H, Cotterill S (2001) The Drosophila Dpit47 protein is a nuclear Hsp90 cochaperone that interacts with DNA polymerase alpha. J Cell Sci 114:2015–2025

    PubMed  CAS  Google Scholar 

  • Cutforth T, Rubin GM (1994) Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77:1027–1036

    PubMed  CAS  Google Scholar 

  • Cyr DM, Douglas MG (1994) Differential regulation of Hsp70 subfamilies by the eukaryotic DnaJ homologue YDJ1. J Biol Chem 269:9798–9804

    PubMed  CAS  Google Scholar 

  • Cyr DM, Lu X, Douglas MG (1992) Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J Biol Chem 267:20927–20931

    PubMed  CAS  Google Scholar 

  • Dai K, Kobayashi R, Beach D (1996) Physical interaction of mammalian CDC37 with CDK4. J Biol Chem 271: 22030–22034

    PubMed  CAS  Google Scholar 

  • Dalman FC, Bresnick EH, Patel PD, Perdew GH, Watson SJ, Jr., Pratt WB (1989) Direct evidence that the glucocorticoid receptor binds to hsp90 at or near the termination of receptor translation in vitro. J Biol Chem 264:19815–19821

    PubMed  CAS  Google Scholar 

  • Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199

    PubMed  CAS  Google Scholar 

  • Davies TH, Ning YM, Sanchez ER (2002) A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 277:4597–4600

    PubMed  CAS  Google Scholar 

  • Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332:1131–1141

    PubMed  CAS  Google Scholar 

  • de Carcer G, do Carmo AM, Lallena MJ, Glover DM, Gonzalez C (2001) Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO J 20:2878–2884

    PubMed  Google Scholar 

  • Dehner A, Furrer J, Richter K, Schuster I, Buchner J, Kessler H (2003) NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol. Chembiochem 4: 870–877

    PubMed  CAS  Google Scholar 

  • Dekker PJ, Pfanner N (1997) Role of mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70. J Mol Biol 270:321–327

    PubMed  CAS  Google Scholar 

  • Denis M, Cuthill S, Wikstrom AC, Poellinger L, Gustafsson JA (1988) Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem Biophys Res Commun 155: 801–807

    PubMed  CAS  Google Scholar 

  • Denis M, Gustafsson JA (1989) Translation of glucocorticoid receptor mRNA in vitro yields a nonactivated protein. J Biol Chem 264:6005–6008

    PubMed  CAS  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805

    PubMed  CAS  Google Scholar 

  • Deuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B (2003) Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47:1317–1328

    PubMed  CAS  Google Scholar 

  • Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696

    PubMed  CAS  Google Scholar 

  • Dittmar KD, Banach M, Galigniana MD, Pratt WB (1998) The role of DnaJ-like proteins in glucocorticoid receptor hsp90 heterocomplex assembly by the reconstituted hsp90. p60. hsp70 foldosome complex. J Biol Chem 273: 7358–7366

    PubMed  CAS  Google Scholar 

  • Dittmar KD, Pratt WB (1997) Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90. p60. hsp70-dependent step is sufficient for creating the steroid binding conformation. J Biol Chem 272:13047–13054

    PubMed  CAS  Google Scholar 

  • Donze O, Abbas-Terki T, Picard D (2001) The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 20:3771–3780

    PubMed  CAS  Google Scholar 

  • Donze O, Picard D (1999) Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected]. Mol Cell Biol 19:8422–8432

    PubMed  CAS  Google Scholar 

  • Duina AA, Marsh JA, Gaber RF (1996) Identification of two CyP-40-like cyclophilins in Saccharomyces cerevisiae, one of which is required for normal growth. Yeast 12:943–952

    PubMed  CAS  Google Scholar 

  • Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28

    PubMed  CAS  Google Scholar 

  • Erpel T, Courtneidge SA (1995) Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Opin Cell Biol 7:176–182

    PubMed  CAS  Google Scholar 

  • Evans RM, Hollenberg SM (1988) Cooperative and positional independent trans-activation domains of the human glucocorticoid receptor. Cold Spring Harb Symp Quant Biol 53 Pt 2:813–818

    PubMed  CAS  Google Scholar 

  • Farrelly FW, Finkelstein DB (1984) Complete sequence of the heat shock-inducible HSP90 gene of Saccharomyces cerevisiae. J Biol Chem 259:5745–5751

    PubMed  CAS  Google Scholar 

  • Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    PubMed  CAS  Google Scholar 

  • Ferreira LR, Norris K, Smith T, Hebert C, Sauk JJ (1994) Association of Hsp47, Grp78, and Grp94 with procollagen supports the successive or coupled action of molecular chaperones. J Cell Biochem 56:518–526

    PubMed  CAS  Google Scholar 

  • Fink AL (1997) Molecular chaperones in the life cycle of proteins. Marcel Dekker, New York, pp 123–150

    Google Scholar 

  • Fisher DL, Mandart E, Doree M (2000) Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO J 19:1516–1524

    PubMed  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346:623–628

    PubMed  CAS  Google Scholar 

  • Flaherty KM, McKay DB, Kabsch W, Holmes KC (1991) Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc Natl Acad Sci 88:5041–5045

    PubMed  CAS  Google Scholar 

  • Flanagan CA, Thorner J (1992) Purification and characterization of a soluble phosphatidylinositol 4-kinase from the yeast Saccharomyces cerevisiae. J Biol Chem 267:24117–24125

    PubMed  CAS  Google Scholar 

  • Fletterick RJ, Bates DJ, Steitz TA (1975) The structure of a yeast hexokinase monomer and its complexes with substrates at 2. 7-A resolution. Proc Natl Acad Sci 72:38–42

    PubMed  CAS  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730

    PubMed  CAS  Google Scholar 

  • Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 276:15571–15574

    PubMed  CAS  Google Scholar 

  • Freeman BC, Felts SJ, Toft DO, Yamamoto KR (2000) The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev 14:422–434

    PubMed  CAS  Google Scholar 

  • Freeman BC, Morimoto RI (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a nonnative protein and protein refolding. EMBO J 15:2969–2979

    PubMed  CAS  Google Scholar 

  • Freeman BC, Toft DO, Morimoto RI (1996) Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 274:1718–1720

    PubMed  CAS  Google Scholar 

  • Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235

    PubMed  CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl FU (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11:4767–4778

    PubMed  CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117

    PubMed  CAS  Google Scholar 

  • Fujita N, Sato S, Ishida A, Tsuruo T (2002) Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277:10346–10353

    PubMed  CAS  Google Scholar 

  • Fukazawa H, Li PM, Yamamoto C, Murakami Y, Mizuno S, Uehara Y (1991) Specific inhibition of cytoplasmic protein tyrosine kinases by herbimycin A in vitro. Biochem Pharmacol 42:1661–1671

    PubMed  CAS  Google Scholar 

  • Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69:833–842

    PubMed  CAS  Google Scholar 

  • Gao B, Emoto Y, Greene L, Eisenberg E (1993) Nucleotide binding properties of bovine brain uncoating ATPase. J Biol Chem 268:8507–8513

    PubMed  CAS  Google Scholar 

  • Gao B, Greene L, Eisenberg E (1994) Characterization of nucleotide-free uncoating ATPase and its binding to ATP, ADP, and ATP analogues. Biochemistry 33:2048–2054

    PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824

    PubMed  CAS  Google Scholar 

  • Garnier C, Lafitte D, Tsvetkov PO, Barbier P, Leclerc-Devin J, Millot JM, Briand C, Makarov AA, Catelli MG, Peyrot V (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 277:12208–12214

    PubMed  CAS  Google Scholar 

  • Gautschi M, Lilie H, Funfschilling U, Mun A, Ross S, Lithgow T, Rucknagel P, Rospert S (2001) RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc Natl Acad Sci 98: 3762–3767

    PubMed  CAS  Google Scholar 

  • Gautschi M, Mun A, Ross S, Rospert S (2002) A functional chaperone triad on the yeast ribosome. Proc Natl Acad Sci 99:4209–4214

    PubMed  CAS  Google Scholar 

  • Gerber MR, Farrell A, Deshaies RJ, Herskowitz I, Morgan DO (1995) Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Proc Natl Acad Sci 92:4651–4655

    PubMed  CAS  Google Scholar 

  • Giannoukos G, Silverstein AM, Pratt WB, Simons SS, Jr. (1999) The seven amino acids (547–553) of rat glucocorticoid receptor required for steroid and hsp90 binding contain a functionally independent LXXLL motif that is critical for steroid binding. J Biol Chem 274:36527–36536

    PubMed  CAS  Google Scholar 

  • Gilmore R, Coffey MC, Lee PW (1998) Active participation of Hsp90 in the biogenesis of the trimeric reovirus cell attachment protein sigma1. J Biol Chem 273:15227–15233

    PubMed  CAS  Google Scholar 

  • Goes FS, Martin J (2001) Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. Eur J Biochem 268:2281–2289

    PubMed  CAS  Google Scholar 

  • Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176

    PubMed  CAS  Google Scholar 

  • Gragerov A, Zeng L, Zhao X, Burkholder W, Gottesman ME (1994) Specificity of DnaK-peptide binding. J Mol Biol 235:848–854

    PubMed  CAS  Google Scholar 

  • Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19:1661–1672

    PubMed  CAS  Google Scholar 

  • Grammatikakis N, Vultur A, Ramana CV, Siganou A, Schweinfest CW, Watson DK, Raptis L (2002) The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem 277: 8312–8320

    PubMed  CAS  Google Scholar 

  • Greene LE, Zinner R, Naficy S, Eisenberg E (1995) Effect of nucleotide on the binding of peptides to 70-kDa heat shock protein. J Biol Chem 270:2967–2973

    PubMed  CAS  Google Scholar 

  • Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    PubMed  CAS  Google Scholar 

  • Gusarova V, Caplan AJ, Brodsky JL, Fisher EA (2001) Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J Biol Chem 276:24891–24900

    PubMed  CAS  Google Scholar 

  • Ha JH, Hellman U, Johnson ER, Li L, McKay DB, Sousa MC, Takeda S, Wernstedt C, Wilbanks SM (1997) Destabilization of peptide binding and interdomain communication by an E543 K mutation in the bovine 70-kDa heat shock cognate protein, a molecular chaperone. J Biol Chem 272:27796–27803

    PubMed  CAS  Google Scholar 

  • Ha JH, Johnson ER, McKay DB, Sousa MC, Takeda S, Wilbanks SM (1999) Structure and mechanism of Hsp70 proteins. In: Molecular chaperones and folding catalysts: regulation, cellular function and mechanisms. Harwood Academic Publishers, pp 573–608

    Google Scholar 

  • Ha JH, McKay DB (1994) ATPase kinetics of recombinant bovine 70-kDa heat shock cognate protein and its amino-terminal ATPase domain. Biochemistry 33:14625–14635

    PubMed  CAS  Google Scholar 

  • Ha JH, McKay DB (1995) Kinetics of nucleotide-induced changes in the tryptophan fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding. Biochemistry 34:11635–11644

    PubMed  CAS  Google Scholar 

  • Hansen WJ, Lingappa VR, Welch WJ (1994) Complex environment of nascent polypeptide chains. J Biol Chem 269:26610–26613

    PubMed  CAS  Google Scholar 

  • Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    PubMed  CAS  Google Scholar 

  • Hartson SD, Matts RL (1994) Association of Hsp90 with cellular Src-family kinases in a cell-free system correlates with altered kinase structure and function. Biochemistry 33:8912–8920

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Shudo K (1991) Cytosolic-nuclear tumor promoter-specific binding protein: association with the 90-kDa heat shock protein and translocation into nuclei by treatment with 12-O-tetradecanoylphorbol 13-acetate. Jpn J Cancer Res 82:665–675

    PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349–384

    PubMed  CAS  Google Scholar 

  • Herbertsson H, Kuhme T, Hammarstrom S (1999) The 650-kDa 12(S)-hydroxyeicosatetraenoic acid binding complex: occurrence in human platelets, identification of hsp90 as a constituent, and binding properties of its 50-kDa subunit. Arch Biochem Biophys 367:33–38

    PubMed  CAS  Google Scholar 

  • Herbst R, Gast K, Seckler R (1998) Folding of firefly (Photinus pyralis) luciferase: aggregation and reactivation of unfolding intermediates. Biochemistry 37:6586–6597

    PubMed  CAS  Google Scholar 

  • Hernandez MP, Chadli A, Toft DO (2002a) HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 277:11873–11881

    PubMed  CAS  Google Scholar 

  • Hernandez MP, Sullivan WP, Toft DO (2002b) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277:38294–38304

    PubMed  CAS  Google Scholar 

  • Herrmann JM, Neupert W (2000) Protein transport into mitochondria. Curr Opin Microbiol 3:210–214

    PubMed  CAS  Google Scholar 

  • Hickey E, Brandon SE, Smale G, Lloyd D, Weber LA (1989) Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein. Mol Cell Biol 9:2615–2626

    PubMed  CAS  Google Scholar 

  • Hoff KG, Silberg JJ, Vickery LE (2000) Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci 97:7790–7795

    PubMed  CAS  Google Scholar 

  • Hohfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    PubMed  CAS  Google Scholar 

  • Holley SJ, Yamamoto KR (1995) A role for Hsp90 in retinoid receptor signal transduction. Mol Biol Cell 6: 1833–1842

    PubMed  CAS  Google Scholar 

  • Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M, Trager JB, Morin GB, Toft DO, Shay JW, Wright WE, White MA (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826

    PubMed  CAS  Google Scholar 

  • Honore B, Leffers H, Madsen P, Rasmussen HH, Vandekerckhove J, Celis JE (1992) Molecular cloning and expression of a transformation-sensitive human protein containing the TPR motif and sharing identity to the stress-inducible yeast protein STI1. J Biol Chem 267:8485–8491

    PubMed  CAS  Google Scholar 

  • Hoshino T, Wang J, Devetten MP, Iwata N, Kajigaya S, Wise RJ, Liu JM, Youssoufian H (1998) Molecular chaperone GRP94 binds to the Fanconi anemia group C protein and regulates its intracellular expression. Blood 91: 4379–4386

    PubMed  CAS  Google Scholar 

  • Howard KJ, Holley SJ, Yamamoto KR, Distelhorst CW (1990) Mapping the HSP90 binding region of the glucocorticoid receptor. J Biol Chem 265:11928–11935

    PubMed  CAS  Google Scholar 

  • Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci 93:1060–1064

    PubMed  CAS  Google Scholar 

  • Hu J, Toft DO, Seeger C (1997) Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 16:59–68

    PubMed  Google Scholar 

  • Hughes SE, Xiao S, Perera S, Fluno C, Hasselbarth J, Jayasankar V, Singh J, Del Rosario A, Freed BM, Singh TP, Lempert N, Conti DJ, Gruber SA (1996) Local immunosuppression of canine renal allografts with 15-deoxyspergualin. Transplant Proc 28:2054–2055

    PubMed  CAS  Google Scholar 

  • Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E (2002) The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci 99: 4203–4208

    PubMed  CAS  Google Scholar 

  • Hunter T (1987a) A tail of two src’s: mutatis mutandis. Cell 49:1–4

    PubMed  CAS  Google Scholar 

  • Hunter T (1987b) A thousand and one protein kinases. Cell 50:823–829

    PubMed  CAS  Google Scholar 

  • Hupp TR, Meek DW, Midgley CA, Lane DP (1992) Regulation of the specific DNA binding function of p53. Cell 71:875–886

    PubMed  CAS  Google Scholar 

  • Hurley JH, Faber HR, Worthylake D, Meadow ND, Roseman S, Pettigrew DW, Remington SJ (1993) Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259:673–677

    PubMed  CAS  Google Scholar 

  • Hutchison KA, Brott BK, De Leon JH, Perdew GH, Jove R, Pratt WB (1992) Reconstitution of the multiprotein complex of pp60src, hsp90, and p50 in a cell-free system. J Biol Chem 267:2902–2908

    PubMed  CAS  Google Scholar 

  • Hutchison KA, Stancato LF, Owens-Grillo JK, Johnson JL, Krishna P, Toft DO, Pratt WB (1995) The 23-kDa acidic protein in reticulocyte lysate is the weakly bound component of the hsp foldosome that is required for assembly of the glucocorticoid receptor into a functional heterocomplex with hsp90. J Biol Chem 270:18841–18847

    PubMed  CAS  Google Scholar 

  • Imai J, Yahara I (2000) Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Mol Cell Biol 20:9262–9270

    PubMed  CAS  Google Scholar 

  • Inanobe A, Takahashi K, Katada T (1994) Association of the beta gamma subunits of trimeric GTP-binding proteins with 90-kDa heat shock protein, hsp90. J Biochem. (Tokyo) 115:486–492

    CAS  Google Scholar 

  • Itoh T, Matsuda H, Mori H (1999) Phylogenetic analysis of the third hsp70 homolog in Escherichia coli; a novel member of the Hsc66 subfamily and its possible cochaperone. DNA Res 6:299–305

    PubMed  CAS  Google Scholar 

  • Jaiswal RK, Weissinger E, Kolch W, Landreth GE (1996) Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J Biol Chem 271:23626–23629

    PubMed  CAS  Google Scholar 

  • Jakob U, Lilie H, Meyer I, Buchner J (1995) Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 270:7288–7294

    PubMed  CAS  Google Scholar 

  • Jerome V, Leger J, Devin J, Baulieu EE, Catelli MG (1991) Growth factors acting via tyrosine kinase receptors induce HSP90 alpha gene expression. Growth Factors 4:317–327

    PubMed  CAS  Google Scholar 

  • Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944

    PubMed  CAS  Google Scholar 

  • Joab I, Radanyi C, Renoir M, Buchou T, Catelli MG, Binart N, Mester J, Baulieu EE (1984) Common nonhormone binding component in nontransformed chick oviduct receptors of four steroid hormones. Nature 308:850–853

    PubMed  CAS  Google Scholar 

  • Johnson BD, Chadli A, Felts SJ, Bouhouche I, Catelli MG, Toft DO (2000) Hsp90 chaperone activity requires the full-length protein and interaction among its multiple domains. J Biol Chem 275:32499–32507

    PubMed  CAS  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    PubMed  CAS  Google Scholar 

  • Johnson J, Corbisier R, Stensgard B, Toft D (1996) The involvement of p23, hsp90, and immunophilins in the assembly of progesterone receptor complexes. J Steroid Biochem Mol Biol 56:31–37

    PubMed  CAS  Google Scholar 

  • Johnson JL, Beito TG, Krco CJ, Toft DO (1994) Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol Cell Biol 14:1956–1963

    PubMed  CAS  Google Scholar 

  • Johnson JL, Craig EA (2000) A role for the Hsp40 Ydj1 in repression of basal steroid receptor activity in yeast. Mol Cell Biol 20:3027–3036

    PubMed  CAS  Google Scholar 

  • Johnson JL, Toft DO (1994) A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J Biol Chem 269:24989–24993

    PubMed  CAS  Google Scholar 

  • Johnson JL, Toft DO (1995) Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 9:670–678

    PubMed  CAS  Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572

    PubMed  CAS  Google Scholar 

  • Joly GA, Ayres M, Kilbourn RG (1997) Potent inhibition of inducible nitric oxide synthase by geldanamycin, a tyrosine kinase inhibitor, in endothelial, smooth muscle cells, and in rat aorta. FEBS Lett 403:40–44

    PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    PubMed  CAS  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumor selectivity on Hsp90 inhibitors. Nature 425:407–410

    PubMed  CAS  Google Scholar 

  • Kang J, Kim T, Ko YG, Rho SB, Park SG, Kim MJ, Kwon HJ, Kim S (2000) Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases. J Biol Chem 275:31682–31688

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Csermely P (1995) ATP induces dissociation of the 90-kDa heat shock protein (hsp90) from F-actin: interference with the binding of heavy meromyosin. Biochem Biophys Res Commun 211:166–174

    PubMed  CAS  Google Scholar 

  • Kelley WL (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem Sci 23: 222–227

    PubMed  CAS  Google Scholar 

  • Kim S, Schilke B, Craig EA, Horwich AL (1998) Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc Natl Acad Sci 95:12860–12865

    PubMed  CAS  Google Scholar 

  • Kimura Y, Rutherford SL, Miyata Y, Yahara I, Freeman BC, Yue L, Morimoto RI, Lindquist S (1997) Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 11:1775–1785

    PubMed  CAS  Google Scholar 

  • Klostermeier D, Seidel R, Reinstein J (1998) Functional properties of the molecular chaperone DnaK from Thermus thermophilus. J Mol Biol 279:841–853

    PubMed  CAS  Google Scholar 

  • Knarr G, Gething MJ, Modrow S, Buchner J (1995) BiP binding sequences in antibodies. J Biol Chem 270: 27589–27594

    PubMed  CAS  Google Scholar 

  • Knarr G, Kies U, Bell S, Mayer M, Buchner J (2002) Interaction of the chaperone BiP with an antibody domain: implications for the chaperone cycle. J Mol Biol 318:611–620

    PubMed  CAS  Google Scholar 

  • Knarr G, Modrow S, Todd A, Gething MJ, Buchner J (1999) BiP-binding sequences in HIV gp160. Implications for the binding specificity of bip. J Biol Chem 274:29850–29857

    PubMed  CAS  Google Scholar 

  • Komori A, Sueoka E, Fujiki H, Ishii M, Kozu T (1999) Association of MTG8 (ETO/CDR), a leukemia-related protein, with serine/threonine protein kinases and heat shock protein HSP90 in human hematopoietic cell lines. Jpn J Cancer Res 90:60–68

    PubMed  CAS  Google Scholar 

  • Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D (1998) The assembly of progesterone receptor-hsp90 complexes using purified proteins. J Biol Chem 273:32973–32979

    PubMed  CAS  Google Scholar 

  • Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H, Yahara I (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc Natl Acad Sci 83:8054–8058

    PubMed  CAS  Google Scholar 

  • Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6: 238–246

    PubMed  CAS  Google Scholar 

  • Kumar R, Grammatikakis N, Chinkers M (2001) Regulation of the atrial natriuretic peptide receptor by heat shock protein 90 complexes. J Biol Chem 276:11371–11375

    PubMed  CAS  Google Scholar 

  • Kuznetsov G, Chen LB, Nigam SK (1994) Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J Biol Chem 269:22990–22995

    PubMed  CAS  Google Scholar 

  • Lai BT, Chin NW, Stanek AE, Keh W, Lanks KW (1984) Quantitation and intracellular localization of the 85 K heat shock protein by using monoclonal and polyclonal antibodies. Mol Cell Biol 4:2802–2810

    PubMed  CAS  Google Scholar 

  • Laloraya S, Gambill BD, Craig EA (1994) A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proc Natl Acad Sci 91:6481–6485

    PubMed  CAS  Google Scholar 

  • Lamphere L, Fiore F, Xu X, Brizuela L, Keezer S, Sardet C, Draetta GF, Gyuris J (1997) Interaction between Cdc37 and Cdk4 in human cells. Oncogene 14:1999–2004

    PubMed  CAS  Google Scholar 

  • Landry SJ, Jordan R, McMacken R, Gierasch LM (1992) Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 355:455–457

    PubMed  CAS  Google Scholar 

  • Lee P, Rao J, Fliss A, Yang E, Garrett S, Caplan AJ (2002) The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. J Cell Biol 159:1051–1059

    PubMed  CAS  Google Scholar 

  • Leroux MR (2001) Protein folding and molecular chaperones in archaea. Adv Appl Microbiol 50:219–277

    PubMed  CAS  Google Scholar 

  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275:10519–10526

    PubMed  CAS  Google Scholar 

  • Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci 88:2874–2878

    PubMed  CAS  Google Scholar 

  • Lipsich LA, Cutt JR, Brugge JS (1982) Association of the transforming proteins of Rous, Fujinami, and Y73 avian sarcoma viruses with the same two cellular proteins. Mol Cell Biol 2:875–880

    PubMed  CAS  Google Scholar 

  • Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS (1994) The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 4:1–18

    PubMed  Google Scholar 

  • Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17:6879–6887

    PubMed  CAS  Google Scholar 

  • Lopez-Buesa P, Pfund C, Craig EA (1998) The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (Hsp70) are governed by the C-terminal domains. Proc Natl Acad Sci 95:15253–15258

    PubMed  CAS  Google Scholar 

  • Louvion JF, Abbas-Terki T, Picard D (1998) Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell 9:3071–3083

    PubMed  CAS  Google Scholar 

  • Louvion JF, Warth R, Picard D (1996) Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. Proc Natl Acad Sci 93:13937–13942

    PubMed  CAS  Google Scholar 

  • Lovric J, Bischof O, Moelling K (1994) Cell cycle-dependent association of Gag-Mil and hsp90. FEBS Lett 343:15–21

    PubMed  CAS  Google Scholar 

  • Lu Z, Cyr DM (1998) Protein folding activity of Hsp70 is modified differentially by the hsp40 cochaperones Sis1 and Ydj1. J Biol Chem 273:27824–27830

    PubMed  CAS  Google Scholar 

  • Lutz T, Westermann B, Neupert W, Herrmann JM (2001) The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J Mol Biol 307:815–825

    PubMed  CAS  Google Scholar 

  • Macario AJ, Lange M, Ahring BK, De Macario EC (1999) Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923–67

    PubMed  CAS  Google Scholar 

  • MacLean M, Picard D (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8:114–119

    PubMed  CAS  Google Scholar 

  • Mahony D, Parry DA, Lees E (1998) Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells. Oncogene 16:603–611

    PubMed  CAS  Google Scholar 

  • Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186

    PubMed  CAS  Google Scholar 

  • Marsh JA, Kalton HM, Gaber RF (1998) Cns1 is an essential protein associated with the hsp90 chaperone complex in Saccharomyces cerevisiae that can restore cyclophilin 40-dependent functions in cpr7Delta cells. Mol Cell Biol 18: 7353–7359

    PubMed  CAS  Google Scholar 

  • Maruya M, Sameshima M, Nemoto T, Yahara I (1999) Monomer arrangement in HSP90 dimer as determined by decoration with N and C-terminal region specific antibodies. J Mol Biol 285:903–907

    PubMed  CAS  Google Scholar 

  • Masson-Gadais B, Houle F, Laferriere J, Huot J (2003) Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8:37–52

    PubMed  CAS  Google Scholar 

  • Matts RL, Hurst R (1989) Evidence for the association of the heme-regulated eIF-2 alpha kinase with the 90-kDa heat shock protein in rabbit reticulocyte lysate in situ. J Biol Chem 264:15542–15547

    PubMed  CAS  Google Scholar 

  • Mayer M, Reinstein J, Buchner J (2003) Modulation of the ATPase cycle of BiP by peptides and proteins. J Mol Biol 330:137–144

    PubMed  CAS  Google Scholar 

  • Mayer MP, Brehmer D, Gassler CS, Bukau B (2001) Hsp70 chaperone machines. Adv Protein Chem 59:1–44

    PubMed  CAS  Google Scholar 

  • Mayer MP, Schroder H, Rudiger S, Paal K, Laufen T, Bukau B (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586–593

    PubMed  CAS  Google Scholar 

  • McCarty JS, Buchberger A, Reinstein J, Bukau B (1995) The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126–137

    PubMed  CAS  Google Scholar 

  • McGuire J, Coumailleau P, Whitelaw ML, Gustafsson JA, Poellinger L (1995) The basic helix-loop-helix/PAS factor Sim is associated with hsp90. Implications for regulation by interaction with partner factors. J Biol Chem 270:31353–31357

    PubMed  CAS  Google Scholar 

  • McKay DB (1993) Structure and mechanism of 70-kDa heat-shock-related proteins. Adv Protein Chem 44:67–98

    PubMed  CAS  Google Scholar 

  • McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human hsp90 by a client protein. J Mol Biol 315:787–798

    PubMed  CAS  Google Scholar 

  • Melnick J, Aviel S, Argon Y (1992) The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J Biol Chem 267:21303–21306

    PubMed  CAS  Google Scholar 

  • Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11:647–658

    PubMed  CAS  Google Scholar 

  • Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels RD (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 18:563–575

    PubMed  CAS  Google Scholar 

  • Miller P, Schnur RC, Barbacci E, Moyer MP, Moyer JD (1994) Binding of benzoquinoid ansamycins to p100 correlates with their ability to deplete the erbB2 gene product p185. Biochem Biophys Res Commun 201:1313–1319

    PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801

    PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Worland PJ, Whitesell L, Neckers LM (1995) Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60vsrc tyrosine kinase. J Biol Chem 270:28654–28659

    PubMed  CAS  Google Scholar 

  • Minami M, Nakamura M, Emori Y, Minami Y (2001) Both the N-and C-terminal chaperone sites of Hsp90 participate in protein refolding. Eur J Biochem 268:2520–2524

    PubMed  CAS  Google Scholar 

  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460:251–256

    PubMed  CAS  Google Scholar 

  • Minton AP, Colclasure GC, Parker JC (1992) Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci 89:10504–10506

    PubMed  CAS  Google Scholar 

  • Miyata Y, Ikawa Y, Shibuya M, Nishida E (2001) Specific association of a set of molecular chaperones including HSP90 and Cdc37 with MOK, a member of the mitogen-activated protein kinase superfamily. J Biol Chem 276: 21841–21848

    PubMed  CAS  Google Scholar 

  • Miyata Y, Yahara I (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047

    PubMed  CAS  Google Scholar 

  • Miyata Y, Yahara I (2000) p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene 19:1477–1484

    PubMed  CAS  Google Scholar 

  • Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M, Hirano T (2001) Regulation of Pim-1 by Hsp90. Biochem Biophys Res Commun 281:663–669

    PubMed  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    PubMed  CAS  Google Scholar 

  • Morano KA, Thiele DJ (1999) The Sch9 protein kinase regulates Hsp90 chaperone complex signal transduction activity in vivo. EMBO J 18:5953–5962

    PubMed  CAS  Google Scholar 

  • Morishima Y, Kanelakis KC, Silverstein AM, Dittmar KD, Estrada L, Pratt WB (2000a) The Hsp organizer protein hop enhances the rate of but is not essential for glucocorticoid receptor folding by the multiprotein Hsp90-based chaperone system. J Biol Chem 275:6894–6900

    PubMed  CAS  Google Scholar 

  • Morishima Y, Murphy PJ, Li DP, Sanchez ER, Pratt WB (2000b) Stepwise assembly of a glucocorticoid receptor hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J Biol Chem 275:18054–18060

    PubMed  CAS  Google Scholar 

  • Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18: 576–585

    PubMed  CAS  Google Scholar 

  • Munoz MJ, Jimenez J (1999) Genetic interactions between Hsp90 and the Cdc2 mitotic machinery in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 261:242–250

    PubMed  CAS  Google Scholar 

  • Muresan Z, Arvan P (1997) Thyroglobulin transport along the secretory pathway. Investigation of the role of molecular chaperone, GRP94, in protein export from the endoplasmic reticulum. J Biol Chem 272:26095–26102

    PubMed  CAS  Google Scholar 

  • Murphy SM, Bergman M, Morgan DO (1993) Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol Cell Biol 13:5290–5300

    PubMed  CAS  Google Scholar 

  • Murzin AG (1995) A ribosomal protein module in EF-G and DNA gyrase. Nat Struct Biol 2:25–26

    PubMed  CAS  Google Scholar 

  • Nadeau K, Sullivan MA, Bradley M, Engman DM, Walsh CT (1992) 83-kilodalton heat shock proteins of trypanosomes are potent peptide-stimulated ATPases. Protein Sci 1:970–979

    PubMed  CAS  Google Scholar 

  • Nadler SG, Tepper MA, Schacter B, Mazzucco CE (1992) Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 258:484–486

    PubMed  CAS  Google Scholar 

  • Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1:237–250

    PubMed  CAS  Google Scholar 

  • Nakai M, Kato Y, Ikeda E, Toh-e A, Endo T (1994) Yge1p, a eukaryotic Grp-E homolog, is localized in the mitochondrial matrix and interacts with mitochondrial Hsp70. Biochem Biophys Res Commun 200:435–442

    PubMed  CAS  Google Scholar 

  • Nakamura T, Hinagata J, Tanaka T, Imanishi T, Wada Y, Kodama T, Doi T (2002) HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors. Biochem Biophys Res Commun 290: 858–864

    PubMed  CAS  Google Scholar 

  • Nathan DF, Lindquist S (1995) Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15:3917–3925

    PubMed  CAS  Google Scholar 

  • Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci 94:12949–12956

    PubMed  CAS  Google Scholar 

  • Navarro D, Qadri I, Pereira L (1991) A mutation in the ectodomain of herpes simplex virus 1 glycoprotein B causes defective processing and retention in the endoplasmic reticulum. Virology 184:253–264

    PubMed  CAS  Google Scholar 

  • Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (1992) The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71:97–105

    PubMed  CAS  Google Scholar 

  • Nemoto T, Matsusaka T, Ota M, Takagi T, Collinge DB, Walther-Larsen H (1996) Dimerization characteristics of the 94-kDa glucose-regulated protein. J Biochem. (Tokyo) 120:249–256

    CAS  Google Scholar 

  • Nicchitta CV (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10:103–109

    PubMed  CAS  Google Scholar 

  • Nicolet CM, Craig EA (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol Cell Biol 9:3638–3646

    PubMed  CAS  Google Scholar 

  • Nimmesgern E, Hartl FU (1993) ATP-dependent protein refolding activity in reticulocyte lysate. Evidence for the participation of different chaperone components. FEBS Lett 331:25–30

    PubMed  CAS  Google Scholar 

  • Nollen EA, Brunsting JF, Song J, Kampinga HH, Morimoto RI (2000) Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity. Mol Cell Biol 20:1083–1088

    PubMed  CAS  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    PubMed  CAS  Google Scholar 

  • O’Brien MC, Flaherty KM, McKay DB (1996) Lysine 71 of the chaperone protein Hsc70 Is essential for ATP hydrolysis. J Biol Chem 271:15874–15878

    PubMed  CAS  Google Scholar 

  • O’Brien MC, McKay DB (1993) Threonine 204 of the chaperone protein Hsc70 influences the structure of the active site, but is not essential for ATP hydrolysis. J Biol Chem 268:24323–24329

    PubMed  CAS  Google Scholar 

  • O’Brien MC, McKay DB (1995) How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity. J Biol Chem 270:2247–2250

    PubMed  CAS  Google Scholar 

  • Ochel HJ, Eichhorn K, Gademann G (2001) Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones 6:105–112

    PubMed  CAS  Google Scholar 

  • Odunuga OO, Hornby JA, Bies C, Zimmermann R, Pugh DJ, Blatch GL (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J Biol Chem 278:6896–6904

    PubMed  CAS  Google Scholar 

  • O’Keeffe B, Fong Y, Chen D, Zhou S, Zhou Q (2000) Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. J Biol Chem 275:279–287

    PubMed  CAS  Google Scholar 

  • Oppermann H, Levinson W, Bishop JM (1981) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci 78:1067–1071

    PubMed  CAS  Google Scholar 

  • Osipiuk J, Walsh MA, Freeman BC, Morimoto RI, Joachimiak A (1999) Structure of a new crystal form of human Hsp70 ATPase domain. Acta Crystallogr D Biol Crystallogr 55:1105–1107

    PubMed  CAS  Google Scholar 

  • Owen BA, Sullivan WP, Felts SJ, Toft DO (2002) Regulation of heat shock protein 90 ATPase activity by sequences in the carboxyl terminus. J Biol Chem 277:7086–7091

    PubMed  CAS  Google Scholar 

  • Owens-Grillo JK, Czar MJ, Hutchison KA, Hoffmann K, Perdew GH, Pratt WB (1996a) A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J Biol Chem 271:13468–13475

    PubMed  CAS  Google Scholar 

  • Owens-Grillo JK, Stancato LF, Hoffmann K, Pratt WB, Krishna P (1996b) Binding of immunophilins to the 90-kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants. Biochemistry 35:15249–15255

    PubMed  CAS  Google Scholar 

  • Packschies L, Theyssen H, Buchberger A, Bukau B, Goody RS, Reinstein J (1997) GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry 36: 3417–3422

    PubMed  CAS  Google Scholar 

  • Pai KS, Mahajan VB, Lau A, Cunningham DD (2001) Thrombin receptor signaling to cytoskeleton requires Hsp90. J Biol Chem 276:32642–32647

    PubMed  CAS  Google Scholar 

  • Palleros DR, Reid KL, Shi L, Welch WJ, Fink AL (1993) ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365:664–666

    PubMed  CAS  Google Scholar 

  • Palmquist K, Riis B, Nilsson A, Nygard O (1994) Interaction of the calcium and calmodulin regulated eEF-2 kinase with heat shock protein 90. FEBS Lett 349:239–242

    PubMed  CAS  Google Scholar 

  • Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836

    PubMed  CAS  Google Scholar 

  • Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, Singh S, Millson SH, Clarke PA, Naaby-Hansen S, Stein R, Cramer R, Mollapour M, Workman P, Piper PW, Pearl LH, Prodromou C (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10:1307–1318

    PubMed  CAS  Google Scholar 

  • Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10:46–51

    PubMed  CAS  Google Scholar 

  • Peng Y, Chen L, Li C, Lu W, Chen J (2001) Inhibition of MDM 2 by hsp90 contributes to mutant p53 stabilization. J Biol Chem 276:40583–40590

    PubMed  CAS  Google Scholar 

  • Perdew GH (1988) Association of the Ah receptor with the 90-kDa heat shock protein. J Biol Chem 263: 13802–13805

    PubMed  CAS  Google Scholar 

  • Perdew GH, Hord N, Hollenback CE, Welsh MJ (1993) Localization and characterization of the 86-and 84-kDa heat shock proteins in Hepa 1c1c7 cells. Exp Cell Res 209:350–356

    PubMed  CAS  Google Scholar 

  • Perdew GH, Whitelaw ML (1991) Evidence that the 90-kDa heat shock protein (HSP90) exists in cytosol in heteromeric complexes containing HSP70 and three other proteins with Mr of 63,000, 56,000, and 50,000. J Biol Chem 266: 6708–6713

    PubMed  CAS  Google Scholar 

  • Pfanner N (2000) Protein sorting: recognizing mitochondrial presequences. Curr Biol 10:R412–R415

    PubMed  CAS  Google Scholar 

  • Pfund C, Lopez-Hoyo N, Ziegelhoffer T, Schilke BA, Lopez-Buesa P, Walter WA, Wiedmann M, Craig EA (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J 17:3981–3989

    PubMed  CAS  Google Scholar 

  • Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59: 1640–1648

    PubMed  CAS  Google Scholar 

  • Pierpaoli EV, Gisler SM, Christen P (1998) Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry 37:16741–16748

    PubMed  CAS  Google Scholar 

  • Piper PW (2001) The Hsp90 chaperone as a promising drug target. Curr Opin Investig Drugs 2:1606–1610

    PubMed  CAS  Google Scholar 

  • Pratt WB, Scherrer LC, Hutchison KA, Dalman FC (1992) A model of glucocorticoid receptor unfolding and stabilization by a heat shock protein complex. J Steroid Biochem Mol Biol 41:223–229

    PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med. (Maywood.) 228:111–133

    CAS  Google Scholar 

  • Privalsky ML (1991) A subpopulation of the v-erb A oncogene protein, a derivative of a thyroid hormone receptor, associates with heat shock protein 90. J Biol Chem 266:1456–1462

    PubMed  CAS  Google Scholar 

  • Prodromou C, Panaretou B, Chohan S, Siligardi G, O’Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH (2000) The ATPase cycle of Hsp90 drives a molecular “clamp” via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392

    PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997a) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, Piper PW, Pearl LH (1997b) A molecular clamp in the crystal structure of the Nterminal domain of the yeast Hsp90 chaperone. Nat Struct Biol 4:477–482

    PubMed  CAS  Google Scholar 

  • Prodromou C, Siligardi G, O’Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain cochaperones. EMBO J 18: 754–762

    PubMed  CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624

    PubMed  CAS  Google Scholar 

  • Rafestin-Oblin ME, Couette B, Radanyi C, Lombes M, Baulieu EE (1989) Mineralocorticosteroid receptor of the chick intestine. Oligomeric structure and transformation. J Biol Chem 264:9304–9309

    PubMed  CAS  Google Scholar 

  • Ramsey AJ, Russell LC, Whitt SR, Chinkers M (2000) Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90. J Biol Chem 275:17857–17862

    PubMed  CAS  Google Scholar 

  • Rebbe NF, Ware J, Bertina RM, Modrich P, Stafford DW (1987) Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family. Gene 53:235–245

    PubMed  CAS  Google Scholar 

  • Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290

    PubMed  CAS  Google Scholar 

  • Richter K, Muschler P, Hainzl O, Buchner J (2001) Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 276:33689–33696

    PubMed  CAS  Google Scholar 

  • Richter K, Muschler P, Hainzl O, Reinstein J, Buchner J (2003) Sti1 is a noncompetitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem 278: 10328–10333

    PubMed  CAS  Google Scholar 

  • Richter K, Reinstein J, Buchner J (2002) N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle. J Biol Chem 277:44905–44910

    PubMed  CAS  Google Scholar 

  • Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith DF (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22: 1158–1167

    PubMed  CAS  Google Scholar 

  • Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    PubMed  CAS  Google Scholar 

  • Rose DW, Wettenhall RE, Kudlicki W, Kramer G, Hardesty B (1987) The 90-kilodalton peptide of the heme-regulated eIF-2 alpha kinase has sequence similarity with the 90-kilodalton heat shock protein. Biochemistry 26: 6583–6587

    PubMed  CAS  Google Scholar 

  • Rudiger S, Buchberger A, Bukau B (1997a) Interaction of Hsp70 chaperones with substrates. Nat Struct Biol 4:342–349

    PubMed  CAS  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997b) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    PubMed  CAS  Google Scholar 

  • Rudiger S, Mayer MP, Schneider-Mergener J, Bukau B (2000) Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. J Mol Biol 304:245–251

    PubMed  CAS  Google Scholar 

  • Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ cochaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

    PubMed  CAS  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    PubMed  CAS  Google Scholar 

  • Sabbah M, Redeuilh G, Baulieu EE (1989) Subunit composition of the estrogen receptor. Involvement of the hormone-binding domain in the dimeric state. J Biol Chem 264:2397–2400

    PubMed  CAS  Google Scholar 

  • Sakagami M, Morrison P, Welch WJ (1999) Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases. Cell Stress Chaperones 4:19–28

    PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    PubMed  CAS  Google Scholar 

  • Sanchez ER, Meshinchi S, Schlesinger MJ, Pratt WB (1987) Demonstration that the 90-kilodalton heat shock protein is bound to the glucocorticoid receptor in its 9S nondeoxynucleic acid binding form. Mol Endocrinol 1:908–912

    PubMed  CAS  Google Scholar 

  • Sanchez ER, Redmond T, Scherrer LC, Bresnick EH, Welsh MJ, Pratt WB (1988) Evidence that the 90-kilodalton heat shock protein is associated with tubulin-containing complexes in L cell cytosol and in intact PtK cells. Mol Endocrinol 2:756–760

    PubMed  CAS  Google Scholar 

  • Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci 97:10832–10837

    PubMed  CAS  Google Scholar 

  • Schaiff WT, Hruska KA, Jr., McCourt DW, Green M, Schwartz BD (1992) HLA-DR associates with specific stress proteins and is retained in the endoplasmic reticulum in invariant chain negative cells. J Exp Med 176: 657–666

    PubMed  CAS  Google Scholar 

  • Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271: 1519–1526

    PubMed  CAS  Google Scholar 

  • Scheibel T, Neuhofen S, Weikl T, Mayr C, Reinstein J, Vogel PD, Buchner J (1997) ATP-binding properties of human Hsp90. J Biol Chem 272:18608–18613

    PubMed  CAS  Google Scholar 

  • Scheibel T, Siegmund HI, Jaenicke R, Ganz P, Lilie H, Buchner J (1999) The charged region of Hsp90 modulates the function of the N-terminal domain. Proc Natl Acad Sci 96:1297–1302

    PubMed  CAS  Google Scholar 

  • Scheibel T, Weikl T, Buchner J (1998) Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc Natl Acad Sci 95:1495–1499

    PubMed  CAS  Google Scholar 

  • Scherrer LC, Dalman FC, Massa E, Meshinchi S, Pratt WB (1990) Structural and functional reconstitution of the glucocorticoid receptor-hsp90 complex. J Biol Chem 265:21397–21400

    PubMed  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    PubMed  CAS  Google Scholar 

  • Schiene-Fischer C, Habazettl J, Schmid FX, Fischer G (2002) The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase. Nat Struct Biol 9:419–424

    PubMed  CAS  Google Scholar 

  • Schmid D, Baici A, Gehring H, Christen P (1994) Kinetics of molecular chaperone action. Science 263: 971–973

    PubMed  CAS  Google Scholar 

  • Schmid SL, Braell WA, Rothman JE (1985) ATP catalyzes the sequestration of clathrin during enzymatic uncoating. J Biol Chem 260:10057–10062

    PubMed  CAS  Google Scholar 

  • Schmid SL, Rothman JE (1985) Two classes of binding sites for uncoating protein in clathrin triskelions. J Biol Chem 260:10050–10056

    PubMed  CAS  Google Scholar 

  • Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU (1996) Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci 93: 14536–14541

    PubMed  CAS  Google Scholar 

  • Schnur RC, Corman ML, Gallaschun RJ, Cooper BA, Dee MF, Doty JL, Muzzi ML, DiOrio CI, Barbacci EG, Miller PE (1995a) erbB-2 oncogene inhibition by geldanamycin derivatives: synthesis, mechanism of action, and structure-activity relationships. J Med Chem 38:3813–3820

    PubMed  CAS  Google Scholar 

  • Schnur RC, Corman ML, Gallaschun RJ, Cooper BA, Dee MF, Doty JL, Muzzi ML, Moyer JD, DiOrio CI, Barbacci EG (1995b) Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem 38:3806–3812

    PubMed  CAS  Google Scholar 

  • Scholz G, Hartson SD, Cartledge K, Hall N, Shao J, Dunn AR, Matts RL (2000) p50(Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck. Mol Cell Biol 20:6984–6995

    PubMed  CAS  Google Scholar 

  • Schonfeld HJ, Schmidt D, Schroder H, Bukau B (1995) The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem 270:2183–2189

    PubMed  CAS  Google Scholar 

  • Schroder H, Langer T, Hartl FU, Bukau B (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137–4144

    PubMed  CAS  Google Scholar 

  • Schuh S, Yonemoto W, Brugge J, Bauer VJ, Riehl RM, Sullivan WP, Toft DO (1985) A 90,000-dalton binding protein common to both steroid receptors and the Rous sarcoma virus transforming protein, pp60v-src. J Biol Chem 260: 14292–14296

    PubMed  CAS  Google Scholar 

  • Schulte TW, Blagosklonny MV, Ingui C, Neckers L (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270:24585–24588

    PubMed  CAS  Google Scholar 

  • Schumacher RJ, Hurst R, Sullivan WP, McMahon NJ, Toft DO, Matts RL (1994) ATP-dependent chaperoning activity of reticulocyte lysate. J Biol Chem 269:9493–9499

    PubMed  CAS  Google Scholar 

  • Schwimmer C, Masison DC (2002) Antagonistic interactions between yeast [PSI(+)] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol 22:3590–3598

    PubMed  CAS  Google Scholar 

  • Sepehrnia B, Paz IB, Dasgupta G, Momand J (1996) Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J Biol Chem 271:15084–15090

    PubMed  CAS  Google Scholar 

  • Shao J, Grammatikakis N, Scroggins BT, Uma S, Huang W, Chen JJ, Hartson SD, Matts RL (2001) Hsp90 regulates p50(cdc37) function during the biogenesis of the active conformation of the heme-regulated eIF2 alpha kinase. J Biol Chem 276:206–214

    PubMed  CAS  Google Scholar 

  • Shiu RP, Pouyssegur J, Pastan I (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci 74: 3840–3844

    PubMed  CAS  Google Scholar 

  • Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU (1999) Compartmentation of protein folding in vivo: sequestration of nonnative polypeptide by the chaperonin-GimC system. EMBO J 18:75–84

    PubMed  CAS  Google Scholar 

  • Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317

    PubMed  CAS  Google Scholar 

  • Siligardi G, Panaretou B, Meyer P, Singh S, Woolfson DN, Piper PW, Pearl LH, Prodromou C (2002) Regulation of Hsp90 ATPase activity by the cochaperone Cdc37p/p50cdc37. J Biol Chem 277:20151–20159

    PubMed  CAS  Google Scholar 

  • Silverstein AM, Grammatikakis N, Cochran BH, Chinkers M, Pratt WB (1998) p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J Biol Chem 273:20090–20095

    PubMed  CAS  Google Scholar 

  • Smith DF (1993) Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol 7:1418–1429

    PubMed  CAS  Google Scholar 

  • Smith DF, Faber LE, Toft DO (1990) Purification of unactivated progesterone receptor and identification of novel receptor-associated proteins. J Biol Chem 265:3996–4003

    PubMed  CAS  Google Scholar 

  • Smith DF, Stensgard BA, Welch WJ, Toft DO (1992) Assembly of progesterone receptor with heat shock proteins and receptor activation are ATP mediated events. J Biol Chem 267:1350–1356

    PubMed  CAS  Google Scholar 

  • Smith DF, Sullivan WP, Marion TN, Zaitsu K, Madden B, McCormick DJ, Toft DO (1993) Identification of a 60-kilodalton stress-related protein, p60, which interacts with hsp90 and hsp70. Mol Cell Biol 13:869–876

    PubMed  CAS  Google Scholar 

  • Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 7:4–11

    PubMed  CAS  Google Scholar 

  • Smith DF, Whitesell L, Nair SC, Chen S, Prapapanich V, Rimerman RA (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 15:6804–6812

    PubMed  CAS  Google Scholar 

  • Sondermann H, Ho AK, Listenberger LL, Siegers K, Moarefi I, Wente SR, Hartl FU, Young JC (2002) Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 cochaperone in Saccharomyces cerevisiae. J Biol Chem 277:33220–33227

    PubMed  CAS  Google Scholar 

  • Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270:3574–3581

    PubMed  CAS  Google Scholar 

  • Song J, Takeda M, Morimoto RI (2001) Bag1-Hsp70 mediates a physiological stress signaling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 3:276–282

    PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HR (1987) The glucose-regulated protein grp94 is related to heat shock protein hsp90. J Mol Biol 194:341–344

    PubMed  CAS  Google Scholar 

  • Soti C, Racz A, Csermely P (2002) A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 277: 7066–7075

    PubMed  CAS  Google Scholar 

  • Spence J, Cegielska A, Georgopoulos C (1990) Role of Escherichia coli heat shock proteins DnaK and HtpG (C62. 5) in response to nutritional deprivation. J Bacteriol 172:7157–7166

    PubMed  CAS  Google Scholar 

  • Spence J, Georgopoulos C (1989) Purification and properties of the Escherichia coli heat shock protein, HtpG. J Biol Chem 264:4398–4403

    PubMed  CAS  Google Scholar 

  • Sreedhar AS, Mihaly K, Pato B, Schnaider T, Stetak A, Kis-Petik K, Fidy J, Simonics T, Maraz A, Csermely P (2003) Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide-and Hsp90-dependent events. J Biol Chem 278:35231–35240

    PubMed  CAS  Google Scholar 

  • Stancato LF, Chow YH, Hutchison KA, Perdew GH, Jove R, Pratt WB (1993) Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J Biol Chem 268:21711–21716

    PubMed  CAS  Google Scholar 

  • Stancato LF, Silverstein AM, Owens-Grillo JK, Chow YH, Jove R, Pratt WB (1997) The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem 272:4013–4020

    PubMed  CAS  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    PubMed  CAS  Google Scholar 

  • Stepanova L, Leng X, Parker SB, Harper JW (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10:1491–1502

    PubMed  CAS  Google Scholar 

  • Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19:5523–5534

    PubMed  CAS  Google Scholar 

  • Sullivan WP, Owen BA, Toft DO (2002) The influence of ATP and p23 on the conformation of hsp90. J Biol Chem 277:45942–45948

    PubMed  CAS  Google Scholar 

  • Szabo A, Langer T, Schroder H, Flanagan J, Bukau B, Hartl FU (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci 91:10345–10349

    PubMed  CAS  Google Scholar 

  • Szyszka R, Kramer G, Hardesty B (1989) The phosphorylation state of the reticulocyte 90-kDa heat shock protein affects its ability to increase phosphorylation of peptide initiation factor 2 alpha subunit by the heme-sensitive kinase. Biochemistry 28:1435–1438

    PubMed  CAS  Google Scholar 

  • Takata Y, Imamura T, Iwata M, Usui I, Haruta T, Nandachi N, Ishiki M, Sasaoka T, Kobayashi M (1997) Functional importance of heat shock protein 90 associated with insulin receptor on insulin-stimulated mitogenesis. Biochem Biophys Res Commun 237:345–347

    PubMed  CAS  Google Scholar 

  • Taniguchi M, Uehara Y, Matsuyama M, Takahashi M (1993) Inhibition of ret tyrosine kinase activity by herbimycin A. Biochem Biophys Res Commun 195:208–214

    PubMed  CAS  Google Scholar 

  • Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    PubMed  CAS  Google Scholar 

  • Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J (1996) The second step of ATP binding to DnaK induces peptide release. J Mol Biol 263:657–670

    PubMed  CAS  Google Scholar 

  • Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18:85–95

    PubMed  CAS  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641–646

    PubMed  CAS  Google Scholar 

  • Toft D, Gorski J (1966) A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci 55:1574–1581

    PubMed  CAS  Google Scholar 

  • Tsubuki S, Saito Y, Kawashima S (1994) Purification and characterization of an endogenous inhibitor specific to the Z-Leu-Leu-Leu-MCA degrading activity in proteasome and its identification as heat-shock protein 90. FEBS Lett 344: 229–233

    PubMed  CAS  Google Scholar 

  • Uzawa M, Grams J, Madden B, Toft D, Salisbury JL (1995) Identification of a complex between centrin and heat shock proteins in CSF-arrested Xenopus oocytes and dissociation of the complex following oocyte activation. Dev Biol 171:51–59

    PubMed  CAS  Google Scholar 

  • Vaiskunaite R, Kozasa T, Voyno-Yasenetskaya TA (2001) Interaction between the G alpha subunit of heterotrimeric G(12) protein and Hsp90 is required for G alpha(12) signaling. J Biol Chem 276:46088–46093

    PubMed  CAS  Google Scholar 

  • van den Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933

    PubMed  Google Scholar 

  • Veldscholte J, Berrevoets CA, Zegers ND, van der Kwast TH, Grootegoed JA, Mulder E (1992) Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry 31:7422–7430

    PubMed  CAS  Google Scholar 

  • Venema RC, Venema VJ, Ju H, Harris MB, Snead C, Jilling T, Dimitropoulou C, Maragoudakis ME, Catravas JD (2003) Novel complexes of guanylate cyclase with heat shock protein 90 and nitric oxide synthase. Am J Physiol Heart Circ Physiol 285:H669–H678

    PubMed  CAS  Google Scholar 

  • Vidal V, Qiu NH, Redfield B, Carlino A, Brot N, Weissbach H (1996) ATP hydrolysis is not required for the dissociation of a substance P BiP complex. Arch Biochem Biophys 330:314–318

    PubMed  CAS  Google Scholar 

  • Voisine C, Cheng YC, Ohlson M, Schilke B, Hoff K, Beinert H, Marszalek J, Craig EA (2001) Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc Natl Acad Sci 98:1483–1488

    PubMed  CAS  Google Scholar 

  • Wagner BJ, Margolis JW (1995) Age-dependent association of isolated bovine lens multicatalytic proteinase complex (proteasome) with heat-shock protein 90, an endogenous inhibitor. Arch Biochem Biophys 323:455–462

    PubMed  CAS  Google Scholar 

  • Waldron C, Jund R, Lacroute F (1974) The elongation rate of proteins of different molecular weight classes in yeast. FEBS Lett 46:11–16

    PubMed  CAS  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed Engl 41:1098–1113

    PubMed  CAS  Google Scholar 

  • Warth R, Briand PA, Picard D (1997) Functional analysis of the yeast 40-kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation. Biol Chem 378:381–391

    PubMed  CAS  Google Scholar 

  • Wartmann M, Davis RJ (1994) The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem 269:6695–6701

    PubMed  CAS  Google Scholar 

  • Weaver AJ, Sullivan WP, Felts SJ, Owen BA, Toft DO (2000) Crystal structure and activity of human p23, a heat shock protein 90 cochaperone. J Biol Chem 275:23045–23052

    PubMed  CAS  Google Scholar 

  • Wegele H, Haslbeck M, Reinstein J, Buchner J (2003a) Sti1 is a novel activator of the Ssa proteins. J Biol Chem 278:25970–25976

    PubMed  CAS  Google Scholar 

  • Wegele H, Muschler P, Bunck M, Reinstein J, Buchner J (2003b) Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. J Biol Chem 278:39303–39310

    PubMed  CAS  Google Scholar 

  • Wei J, Gaut JR, Hendershot LM (1995) In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis. J Biol Chem 270:26677–26682

    PubMed  CAS  Google Scholar 

  • Weikl T, Abelmann K, Buchner J (1999) An unstructured C-terminal region of the Hsp90 cochaperone p23 is important for its chaperone function. J Mol Biol 293:685–691

    PubMed  CAS  Google Scholar 

  • Weikl T, Muschler P, Richter K, Veit T, Reinstein J, Buchner J (2000) C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J Mol Biol 303:583–592

    PubMed  CAS  Google Scholar 

  • Welch WJ, Feramisco JR (1982) Purification of the major mammalian heat shock proteins. J Biol Chem 257: 14949–14959

    PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Craig EA (1989) Expression of members of the Saccharomyces cerevisiae hsp70 multigene family. Genome 31:684–689

    PubMed  CAS  Google Scholar 

  • Whitelaw ML, Hutchison K, Perdew GH (1991) A 50-kDa cytosolic protein complexed with the 90-kDa heat shock protein (hsp90) is the same protein complexed with pp60v-src hsp90 in cells transformed by the Rous sarcoma virus. J Biol Chem 266:16436–16440

    PubMed  CAS  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci 91:8324–8328

    PubMed  CAS  Google Scholar 

  • Whitesell L, Shifrin SD, Schwab G, Neckers LM (1992) Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 52:1721–1728

    PubMed  CAS  Google Scholar 

  • Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18: 1517–1524

    PubMed  CAS  Google Scholar 

  • Wickner S, Hoskins J, McKenney K (1991) Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 350:165–167

    PubMed  CAS  Google Scholar 

  • Wigley DB, Davies GJ, Dodson EJ, Maxwell A, Dodson G (1991) Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351:624–629

    PubMed  CAS  Google Scholar 

  • Wilbanks SM, Chen L, Tsuruta H, Hodgson KO, McKay DB (1995) Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. Biochemistry 34:12095–12106

    PubMed  CAS  Google Scholar 

  • Wilbanks SM, McKay DB (1995) How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270:2251–2257

    PubMed  CAS  Google Scholar 

  • Wilhelmsson A, Cuthill S, Denis M, Wikstrom AC, Gustafsson JA, Poellinger L (1990) The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein. EMBO J 9:69–76

    PubMed  CAS  Google Scholar 

  • Wilson EM, Lea OA, French FS (1977) 9S binding protein for androgens and progesterone. Proc Natl Acad Sci 74:1960–1964

    PubMed  CAS  Google Scholar 

  • Xu M, Dittmar KD, Giannoukos G, Pratt WB, Simons SS, Jr (1998) Binding of hsp90 to the glucocorticoid receptor requires a specific 7-amino acid sequence at the amino terminus of the hormone-binding domain. J Biol Chem 273: 13918–13924

    PubMed  CAS  Google Scholar 

  • Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276: 3702–3708

    PubMed  CAS  Google Scholar 

  • Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci 90:7074–7078

    PubMed  CAS  Google Scholar 

  • Xu Y, Singer MA, Lindquist S (1999) Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc Natl Acad Sci 96:109–114

    PubMed  CAS  Google Scholar 

  • Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the cochaperone p23. EMBO J 19:5930–5940

    PubMed  CAS  Google Scholar 

  • Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    PubMed  CAS  Google Scholar 

  • Young JC, Obermann WM, Hartl FU (1998) Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. J Biol Chem 273:18007–18010

    PubMed  CAS  Google Scholar 

  • Young JC, Schneider C, Hartl FU (1997) In vitro evidence that hsp90 contains two independent chaperone sites. FEBS Lett 418:139–143

    PubMed  CAS  Google Scholar 

  • Yura T, Nagai H, Mori H (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47: 321–350

    PubMed  CAS  Google Scholar 

  • Zhang L, Hach A, Wang C (1998) Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1. Mol Cell Biol 18:3819–3828

    PubMed  CAS  Google Scholar 

  • Zhao YG, Gilmore R, Leone G, Coffey MC, Weber B, Lee PW (2001) Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein. J Biol Chem 276:32822–32827

    PubMed  CAS  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    PubMed  CAS  Google Scholar 

  • Ziemiecki A, Catelli MG, Joab I, Moncharmont B (1986) Association of the heat shock protein hsp90 with steroid hormone receptors and tyrosine kinase oncogene products. Biochem Biophys Res Commun 138:1298–1307

    PubMed  CAS  Google Scholar 

  • Zylicz M, Ang D, Georgopoulos C (1987) The grpE protein of Escherichia coli. Purification and properties. J Biol Chem 262:17437–17442

    PubMed  CAS  Google Scholar 

  • Zylicz M, King FW, Wawrzynow A (2001) Hsp70 interactions with the p53 tumor suppressor protein. EMBO J 20: 4634–4638

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Buchner .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Wegele, H., Müller, L., Buchner, J. (2004). Hsp70 and Hsp90—a relay team for protein folding. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-003-0021-1

Download citation

  • DOI: https://doi.org/10.1007/s10254-003-0021-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22096-1

  • Online ISBN: 978-3-540-44423-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics