Skip to main content
Log in

Molecular cloning and biochemical characterization of isoprene synthases from the tropical trees Ficus virgata, Ficus septica, and Casuarina equisetifolia

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Three isoprene synthase (IspS) cDNA clones have been isolated from tropical trees (Ficus septica, F. virgata, and Casuarina equisetifolia), and their enzyme properties have been compared with those of Populus alba IspS. Phylogenetic analysis of the deduced amino acid sequences with known monoterpene synthase resolved IspS from F. septica and F. virgata and other IspSs in a clade together with TPS-b clade I, whereas IspS from C. equisetifolia was within another clade, sister to TPS-b clade II. The optimum reaction temperature was 40 °C for the IspSs isolated from the tropical trees, and 45 °C for P. alba IspS. The optimum pH of the IspSs from the tropical trees peaked between pH 8 and pH10 contrasting with the rather broad optimum pH (7.5–10.5) of P. alba IspS. IspSs from F. septica and F. virgata were activated solely by Mg2+, whereas IspS from C. equisetifolia was dependent more on Mn2+ than on Mg2+. Michaelis constant (Km) values of IspSs from tropical trees were lower than that of P. alba IspS. Analysis of inter fragment interaction energy of IspS-substrate complex model and crystal structure of bornyl diphosphate synthase (1N20) found that the coordination geometry of amino acids with higher attraction force is similar at the active site of C. equisetifolia IspS and bornyl diphosphate synthase. These observations suggest the occurrence of another group of IspSs in TPS-b subfamily and extend the knowledge on biochemical regulatory mechanism of isoprene emission from tropical trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aaron JA, Christianson DW (2010) Trinuclear metal clusters in catalysis by terpenoid synthases. Pure Appl Chem 82:1585–1597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basyuni M et al (2006) Molecular cloning and functional expression of a multifunctional triterpene synthase cDNA from a mangrove species Kandelia candel (L.) Druce. Phytochemistry 67:2517–2524

    Article  CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci Publ Protein Soc 2:1511–1519. doi:10.1002/pro.5560020916

    Article  CAS  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. The New York Botanical Garden, New York

    Google Scholar 

  • Davisson VJ, Woodside AB, Poulter CD (1985) Synthesis of allylic and homoallylic isoprenoid pyrophosphates. Methods Enzymol 110:130–144

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt J, Kollner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  CAS  PubMed  Google Scholar 

  • Fehsenfeld F et al (1992) Emissions of volatile organic compounds, from vegetation and the implications for atmospheric chemistry. Global Biogeochem Cycles 96:389–430

    Article  Google Scholar 

  • Gray DW, Breneman SR, Topper LA, Sharkey TD (2011) Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol Chem 286:20582–20590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guenther A et al (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atmos 100:8873–8892

    Article  CAS  Google Scholar 

  • Guenther A, Otter L, Zimmerman P, Greenberg J, Scholes R, Scholes M (1996) Biogenic hydrocarbon emissions from southern African savannas. J Geophys Res Atmos 101:25859–25865

    Article  CAS  Google Scholar 

  • Guenther A et al (1999) Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. J Geophys Res Atmos 104:30625–30639

    Article  CAS  Google Scholar 

  • Helmig D et al (1998) Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon. J Geophys Res Atmos 103:25519–25532

    Article  CAS  Google Scholar 

  • Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601

    Article  CAS  PubMed  Google Scholar 

  • Kesselmeier J et al (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072

    Article  CAS  Google Scholar 

  • Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999a) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  • Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999b) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  • Koksal M, Zimmer I, Schnitzler JP, Christianson DW (2010) Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 402:363–373

    Article  PubMed Central  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lehning A, Zimmer I, Steinbrecher R, Bruggemann N, Schnitzler JP (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L-leaves. Plant Cell Environ 22:495–504

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin DM et al (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. Bmc Plant Biol 10:226

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler RP (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in Grey poplar leaves. Plant Physiol 139:474–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oku H, Fukuta M, Iwasaki H, Tambunan P, Baba S (2008) Modification of the isoprene emission model G93 for tropical tree Ficus virgata. Atmos Environ 42:8747–8754. doi:10.1016/j.atmosenv.2008.08.036

    Article  CAS  Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Ohara K, Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579:2514–2518

    Article  CAS  PubMed  Google Scholar 

  • Scharer MA, Eliot AC, Grutter MG, Capitani G (2011) Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy. FEBS Lett 585:111–114

    Article  PubMed  Google Scholar 

  • Schnitzler JP, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ (2005) Biochemical properties of isoprene synthase in poplar (Populus × canescens). Planta 222:777–786. doi:10.1007/s00425-005-0022-1

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712. doi:10.1104/pp.104.054445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharkey TD, Gray DW, Pell HK, Breneman SR, Topper L (2013) Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the Tps-B terpene synthase family. Evolution 67:1026–1040

    Article  CAS  PubMed  Google Scholar 

  • Silver GM, Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vickers CE et al (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Possell M, Hewitt CN, Mullineaux PM (2010) Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.). Plant Mol Biol 73:547–558

    Article  CAS  PubMed  Google Scholar 

  • Wiberley AE, Donohue AR, Westphal MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32:939–947. doi:10.1111/j.1365-3040.2009.01980.x

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen A, Kirst H, Melis A (2012) Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenerg Res 5:814–828. doi:10.1007/s12155-012-9192-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Yazaki, Kyoto University for the generous provision of the P. alba IspS cDNA. The authors also thank Dr. Ryo Yanagitta for his help with the use of Autodock program and Dr. Seikoh Saitoh for the installation and operation of PAICS program. Our thanks also go to Mr. Motoi Itoh, Naeko Miyazato, Narumi Tsunoda, Shin Kedashiro for their contribution in the cloning of IspS cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirosuke Oku.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 (PDF 378 kb)

Table S1 (DOC 704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oku, H., Inafuku, M., Ishikawa, T. et al. Molecular cloning and biochemical characterization of isoprene synthases from the tropical trees Ficus virgata, Ficus septica, and Casuarina equisetifolia . J Plant Res 128, 849–861 (2015). https://doi.org/10.1007/s10265-015-0740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0740-9

Keywords

Navigation