Skip to main content

Advertisement

Log in

Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The aim of this study was to demonstrate a new automatic brain segmentation method in magnetic resonance imaging (MRI).

Materials and methods

The signal of a spoiled gradient-recalled echo (SPGR) sequence acquired with multiple flip angles was used to map T1, and a subsequent fit of a multi-compartment model yielded parametric maps of partial volume estimates of the different compartments. The performance of the proposed method was assessed through simulations as well as in-vivo experiments in five healthy volunteers.

Results

Simulations indicated that the proposed method was capable of producing robust segmentation maps with good reliability. Mean bias was below 3 % for all tissue types, and the corresponding similarity index (Dice’s coefficient) was over 95 % (SNR = 100). In-vivo experiments yielded realistic segmentation maps, with comparable quality to results obtained with an established segmentation method. Relative whole-brain cerebrospinal fluid, grey matter, and white matter volumes were (mean ± SE) respectively 6.8 ± 0.5, 47.3 ± 1.1, and 45.9 ± 1.3 % for the proposed method, and 7.5 ± 0.6, 46.2 ± 1.2, and 46.3 ± 0.9 % for the reference method.

Conclusion

The proposed approach is promising for brain segmentation and partial volume estimation. The straightforward implementation of the method is attractive, and protocols that already rely on SPGR-based T1 mapping may employ this method without additional scans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Balafar MA, Ramli AR, Saripan MI, Mashohor S (2010) Review of brain MRI image segmentation methods. Artif Intell Rev 33:261–274

    Article  Google Scholar 

  2. Ahlgren A, Petersen E, Ståhlberg F, Wirestam R, Knutsson L (2011) Using fractional segmentation for estimation of the equilibrium magnetization of arterial blood in model-free arterial spin labeling. In: Proceedings of the 28th annual meeting ESMRMB, Leipzig, p 554

  3. Giorgio A, De Stefano N (2013) Clinical use of brain volumetry. J Magn Reson Imaging 37:1–14

    Article  PubMed  Google Scholar 

  4. Asllani I, Borogovac A, Brown TR (2008) Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 60:1362–1371

    Article  PubMed  Google Scholar 

  5. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851

    Article  PubMed  Google Scholar 

  6. Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML (1995) MRI segmentation: methods and applications. Magn Reson Imaging 13:343–368

    Article  CAS  PubMed  Google Scholar 

  7. Shin W, Geng X, Gu H, Zhan W, Zou Q, Yang Y (2010) Automated brain tissue segmentation based on fractional signal mapping from inversion recovery look-locker acquisition. NeuroImage 52:1347–1354

    Article  PubMed Central  PubMed  Google Scholar 

  8. West J, Warntjes JB, Lundberg P (2012) Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol 22:998–1007

    Article  CAS  PubMed  Google Scholar 

  9. Petr J, Schramm G, Hofheinz F, Langner J, van den Hoff J (2013) Partial volume correction in arterial spin labeling using a look-locker sequence. Magn Reson Med 70:1535–1543

    Article  PubMed  Google Scholar 

  10. Ahlgren A, Petersen E, Ståhlberg F, Wirestam R, Knutsson L (2012) Partial volume correction in model-free arterial spin labeling. In: Proceedings of the 29th annual meeting ESMRMB, Lisbon, p 110

  11. Christensen KA, Grant DM, Schulman EM, Walling C (1974) Optimal determination of relaxation times of Fourier transform nuclear magnetic resonance. Determination of spin-lattice relaxation times in chemically polarized species. J Phys Chem 78:1971–1977

    Article  CAS  Google Scholar 

  12. Fram EK, Herfkens RJ, Johnson GA, Glover GH, Karis JP, Shimakawa A, Perkins TG, Pelc NJ (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5:201–208

    Article  CAS  PubMed  Google Scholar 

  13. Deoni SC, Rutt BK, Peters TM (2003) Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 49:515–526

    Article  PubMed  Google Scholar 

  14. Cheng H, Wright G (2006) Rapid high-resolution T1 mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 55:566–574

    Article  PubMed  Google Scholar 

  15. Insko EK, Bolinger L (1993) Mapping of the radiofrequency field. J Magn Reson A 103:82–85

    Article  CAS  Google Scholar 

  16. Stollberger R, Wach P (1996) Imaging of the active B1 field in vivo. Magn Reson Med 35:246–251

    Article  CAS  PubMed  Google Scholar 

  17. Aubert-Broche B, Griffin M, Pike GB, Evans AC, Collins DL (2006) Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans Med Imag 25:1410–1416

    Article  Google Scholar 

  18. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 9:531–538

    Article  CAS  PubMed  Google Scholar 

  19. Prastawa M, Bullitt E, Gerig G (2009) Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Med Image Anal 13:297–311

    Article  PubMed Central  PubMed  Google Scholar 

  20. Iglesias JE, Liu CY, Thompson PM, Tu Z (2011) Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans Med Imaging 30:1617–1634

    Article  PubMed  Google Scholar 

  21. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205

    Article  PubMed  Google Scholar 

  22. Donahue MJ, Lu H, Jones CK, Edden RA, Pekar JJ, van Zijl PC (2006) Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 56:1261–1273

    Article  PubMed  Google Scholar 

  23. Liu T, Young G, Huang L, Chen NK, Wong ST (2006) 76-space analysis of grey matter diffusivity: methods and applications. NeuroImage 31:51–65

    Article  PubMed  Google Scholar 

  24. Cardenas VA, Ezekiel F, Di Sclafani V, Gomberg B, Fein G (2001) Reliability of tissue volumes and their spatial distribution for segmented magnetic resonance images. Psychiat Res-Neuroim 106:193–205

    Article  CAS  Google Scholar 

  25. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imag 13:716–724

    Article  CAS  Google Scholar 

  26. Wang J, Qiu M, Kim H, Constable RT (2006) T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 182:283–292

    Article  CAS  PubMed  Google Scholar 

  27. Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N (2009) Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. NeuroImage 47:194–198

    Article  PubMed Central  PubMed  Google Scholar 

  28. Parker GJ, Barker GJ, Tofts PS (2001) Accurate multislice gradient echo T(1) measurement in the presence of non-ideal RF pulse shape and RF field nonuniformity. Magn Reson Med 45:838–845

    Article  CAS  PubMed  Google Scholar 

  29. Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135

    Article  CAS  PubMed  Google Scholar 

  30. Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200

    Article  PubMed  Google Scholar 

  31. Sacolick LI, Wiesinger F, Hancu I, Vogel MW (2010) B1 mapping by Bloch-Siegert shift. Magn Reson Med 63:1315–1322

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wirestam R (2012) Using contrast agents to obtain maps of regional perfusion and capillary wall permeability. Imaging Med 4:423–442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Swedish Research Council (grant nos. 13514, 2005–6910, 2007–3974 and 2007–6079), the Crafoord foundation, the Lund University Hospital Donation Funds and the Swedish Cancer Society, grant no. 2009/1076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Ahlgren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahlgren, A., Wirestam, R., Ståhlberg, F. et al. Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition. Magn Reson Mater Phy 27, 551–565 (2014). https://doi.org/10.1007/s10334-014-0439-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0439-2

Keywords

Navigation