Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2016

09.02.2016 | Research Article

Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI

verfasst von: Steffen Lother, Steven J. Schiff, Thomas Neuberger, Peter M. Jakob, Florian Fidler

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Objective

In this work, a prototype of an effective electromagnet with a field-of-view (FoV) of 140 mm for neonatal head imaging is presented. The efficient implementation succeeded by exploiting the use of steel plates as a housing system. We achieved a compromise between large sample volumes, high homogeneity, high B0 field, low power consumption, light weight, simple fabrication, and conserved mobility without the necessity of a dedicated water cooling system.

Materials and methods

The entire magnetic resonance imaging (MRI) system (electromagnet, gradient system, transmit/receive coil, control system) is introduced and its unique features discussed. Furthermore, simulations using a numerical optimization algorithm for magnet and gradient system are presented.

Results

Functionality and quality of this low-field scanner operating at 23 mT (generated with 500 W) is illustrated using spin-echo imaging (in-plane resolution 1.6 mm × 1.6 mm, slice thickness 5 mm, and signal-to-noise ratio (SNR) of 23 with a acquisition time of 29 min). B0 field-mapping measurements are presented to characterize the homogeneity of the magnet, and the B0 field limitations of 80 mT of the system are fully discussed.

Conclusion

The cryogen-free system presented here demonstrates that this electromagnet with a ferromagnetic housing can be optimized for MRI with an enhanced and homogeneous magnetic field. It offers an alternative to prepolarized MRI designs in both readout field strength and power use. There are multiple indications for the clinical medical application of such low-field devices.
Literatur
1.
Zurück zum Zitat Blümich B, Casanova F, Appelt S (2009) NMR at low magnetic fields. Chem Phys Lett 477(4–6):231–240CrossRef Blümich B, Casanova F, Appelt S (2009) NMR at low magnetic fields. Chem Phys Lett 477(4–6):231–240CrossRef
2.
Zurück zum Zitat Stepisnik J, Erzen V, Kos M (1990) NMR imaging in the earth’s magnetic field. Magn Reson Med 15(3):386–391CrossRefPubMed Stepisnik J, Erzen V, Kos M (1990) NMR imaging in the earth’s magnetic field. Magn Reson Med 15(3):386–391CrossRefPubMed
3.
Zurück zum Zitat Mohoric A, Planinsic G, Kos M, Duh A, Stepisnik J (2004) Magnetic resonance imaging system based on earth’s magnetic field. Instrum Sci Technol 32(6):655–667CrossRef Mohoric A, Planinsic G, Kos M, Duh A, Stepisnik J (2004) Magnetic resonance imaging system based on earth’s magnetic field. Instrum Sci Technol 32(6):655–667CrossRef
4.
Zurück zum Zitat Mohoric A, Stepisnik J, Kos K, Planinsic G (1999) Self-diffusion imaging by spin echo in earth’s magnetic field. J Magn Reson 136(1):22–26CrossRefPubMed Mohoric A, Stepisnik J, Kos K, Planinsic G (1999) Self-diffusion imaging by spin echo in earth’s magnetic field. J Magn Reson 136(1):22–26CrossRefPubMed
5.
Zurück zum Zitat Appelt S, Kühn H, Häsing W, Blümich B (2006) Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the earth’s magnetic field. Nat Phys 2:105–109CrossRef Appelt S, Kühn H, Häsing W, Blümich B (2006) Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the earth’s magnetic field. Nat Phys 2:105–109CrossRef
6.
Zurück zum Zitat Appelt S, Häsing FW, Kühn H, Perlo J, Blümich B (2005) Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the earth’s magnetic field. Phys Rev Lett 94(19):197602CrossRefPubMed Appelt S, Häsing FW, Kühn H, Perlo J, Blümich B (2005) Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the earth’s magnetic field. Phys Rev Lett 94(19):197602CrossRefPubMed
7.
Zurück zum Zitat Halse ME, Coy A, Dykstra R, Eccles C, Hunter M, Ward R, Callaghan PT (2006) A practical and flexible implementation of 3D MRI in the earth’s magnetic field. J Magn Reson 182(1):75–83CrossRefPubMed Halse ME, Coy A, Dykstra R, Eccles C, Hunter M, Ward R, Callaghan PT (2006) A practical and flexible implementation of 3D MRI in the earth’s magnetic field. J Magn Reson 182(1):75–83CrossRefPubMed
8.
Zurück zum Zitat Kegler C, Seton HC, Hutchison JMS (2007) Prepolarized fast spin-echo pulse sequence for low-field MRI Magnetic Resonance in Medicine. Magn Reson Med 57(6):1180–1184CrossRefPubMed Kegler C, Seton HC, Hutchison JMS (2007) Prepolarized fast spin-echo pulse sequence for low-field MRI Magnetic Resonance in Medicine. Magn Reson Med 57(6):1180–1184CrossRefPubMed
9.
Zurück zum Zitat Savukov I, Karaulanov T, Castro A, Volegov P, Matlashov A, Urbatis A, Gomez J, Espy M (2011) Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration. J Magn Reson 211(2):101–108CrossRefPubMedPubMedCentral Savukov I, Karaulanov T, Castro A, Volegov P, Matlashov A, Urbatis A, Gomez J, Espy M (2011) Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration. J Magn Reson 211(2):101–108CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Lother S, Hoelscher U, Kampf T, Jakob P, Fidler F (2013) 3D gradient system for two B0 field directions in Earth´s field MRI. Magn Reson Mater Phy 26(6):565–573CrossRef Lother S, Hoelscher U, Kampf T, Jakob P, Fidler F (2013) 3D gradient system for two B0 field directions in Earth´s field MRI. Magn Reson Mater Phy 26(6):565–573CrossRef
11.
Zurück zum Zitat Matter NI, Scott GC, Venook RD, Ungersma SE, Grafendorfer T, Macovski A, Conolly SM (2006) Three-dimensional prepolarized magnetic resonance imaging using rapid acquisition with relaxation enhancement. Magn Reson Med 56(5):1085–1095CrossRefPubMed Matter NI, Scott GC, Venook RD, Ungersma SE, Grafendorfer T, Macovski A, Conolly SM (2006) Three-dimensional prepolarized magnetic resonance imaging using rapid acquisition with relaxation enhancement. Magn Reson Med 56(5):1085–1095CrossRefPubMed
12.
Zurück zum Zitat Savnik A, Malmskov H, Thomsen HS, Bretlau T, Graff LB, Nielsen H, Danneskiold-Samsøe B, Boesen J, Bliddal H (2001) MRI of the arthritic small joints: comparison of extremity MRI (0.2 T) vs high-field MRI (1.5 T). Eur Radiol 11(6):1030–1038CrossRefPubMed Savnik A, Malmskov H, Thomsen HS, Bretlau T, Graff LB, Nielsen H, Danneskiold-Samsøe B, Boesen J, Bliddal H (2001) MRI of the arthritic small joints: comparison of extremity MRI (0.2 T) vs high-field MRI (1.5 T). Eur Radiol 11(6):1030–1038CrossRefPubMed
13.
Zurück zum Zitat Feynman R, Leighton R, Sands M (2006) The Feynman lectures on physics, vol II. Addison-Wesley, Reading. ISBN 0-8053-9047-2 (Chapter 37: Magnetic Materials) Feynman R, Leighton R, Sands M (2006) The Feynman lectures on physics, vol II. Addison-Wesley, Reading. ISBN 0-8053-9047-2 (Chapter 37: Magnetic Materials)
14.
Zurück zum Zitat Wright SM, Brown DG, Porter JR, Spence DC, Esparza E, Cole DC, Huson FR (2002) A desktop magnetic resonance imaging system. Magn Reson Mater Phy 13(3):177–185CrossRef Wright SM, Brown DG, Porter JR, Spence DC, Esparza E, Cole DC, Huson FR (2002) A desktop magnetic resonance imaging system. Magn Reson Mater Phy 13(3):177–185CrossRef
15.
Zurück zum Zitat Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J Comput Phys 90(1):161–175CrossRef Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J Comput Phys 90(1):161–175CrossRef
16.
Zurück zum Zitat Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680CrossRefPubMed Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680CrossRefPubMed
17.
Zurück zum Zitat Hidalgo-Tobon SS (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn Reson A 36(4):223–242CrossRef Hidalgo-Tobon SS (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn Reson A 36(4):223–242CrossRef
18.
Zurück zum Zitat Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11(7):903–920CrossRefPubMed Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11(7):903–920CrossRefPubMed
19.
Zurück zum Zitat Golay MJE (1958) Field homogenizing coils for nuclear spin resonance instrumentation. Rev Sci Instrum 29(4):313–315CrossRef Golay MJE (1958) Field homogenizing coils for nuclear spin resonance instrumentation. Rev Sci Instrum 29(4):313–315CrossRef
20.
Zurück zum Zitat Tanner JE (1965) Pulsed field gradients for NMR spin-echo diffusion measurements. Rev Sci Instrum 36:1086–1087CrossRef Tanner JE (1965) Pulsed field gradients for NMR spin-echo diffusion measurements. Rev Sci Instrum 36:1086–1087CrossRef
21.
Zurück zum Zitat Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630–638CrossRef Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630–638CrossRef
22.
Zurück zum Zitat Aksel B, Marinelli L, Collick BD, Von Morze C, Bottomley PA, Hardy CJ (2007) Local planar gradients with order-of-magnitude strength and speed advantage. Magn Reson Med 58(1):134–143CrossRefPubMedPubMedCentral Aksel B, Marinelli L, Collick BD, Von Morze C, Bottomley PA, Hardy CJ (2007) Local planar gradients with order-of-magnitude strength and speed advantage. Magn Reson Med 58(1):134–143CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Caparelli EC, Tomasi D, Panepucci H (1999) Shielded biplanar gradient coil design. Magn Reson Imaging 9(5):725–731CrossRef Caparelli EC, Tomasi D, Panepucci H (1999) Shielded biplanar gradient coil design. Magn Reson Imaging 9(5):725–731CrossRef
24.
Zurück zum Zitat Martens MA, Petropoulos LS, Brown RW, Andrews JH, Morich MA, Patrick JL (1991) Insertable biplanar gradient coils for magnetic resonance imaging. Rev Sci Instrum 62(11):2639–2645CrossRef Martens MA, Petropoulos LS, Brown RW, Andrews JH, Morich MA, Patrick JL (1991) Insertable biplanar gradient coils for magnetic resonance imaging. Rev Sci Instrum 62(11):2639–2645CrossRef
25.
Zurück zum Zitat Tomasi D, Caparelli EC, Panepucci H, Foerster B (1999) Fast optimization of a biplanar gradient coil set. J Magn Reson 140(2):325–339CrossRefPubMed Tomasi D, Caparelli EC, Panepucci H, Foerster B (1999) Fast optimization of a biplanar gradient coil set. J Magn Reson 140(2):325–339CrossRefPubMed
26.
Zurück zum Zitat Romeo F, Hoult DI (1984) Magnet field profiling—analysis and correcting coil design. Magn Reson Med 1(1):44–65CrossRefPubMed Romeo F, Hoult DI (1984) Magnet field profiling—analysis and correcting coil design. Magn Reson Med 1(1):44–65CrossRefPubMed
27.
Zurück zum Zitat Sekihara K, Matsui S, Kohno H (1985) NMR imaging for magnets with large nonuniformities. IEEE Trans Med Imaging MI-4(4):193–199CrossRef Sekihara K, Matsui S, Kohno H (1985) NMR imaging for magnets with large nonuniformities. IEEE Trans Med Imaging MI-4(4):193–199CrossRef
28.
Zurück zum Zitat Kartäusch R, Wintzheimer S, Ledwig M, Jakob PM, Fidler F (2011) Compact magnet design with significantly reduced eddy currents based on ferrite material. In: International conference on magnetic resonance microscopy (ICMRM), Beijing, China, p 202 Kartäusch R, Wintzheimer S, Ledwig M, Jakob PM, Fidler F (2011) Compact magnet design with significantly reduced eddy currents based on ferrite material. In: International conference on magnetic resonance microscopy (ICMRM), Beijing, China, p 202
29.
Zurück zum Zitat Mispelter J, Lupu M, Briguet A (2006) NMR Probeheads for Biophysical and Biomedical Experiments. Imperial College Press, LondonCrossRef Mispelter J, Lupu M, Briguet A (2006) NMR Probeheads for Biophysical and Biomedical Experiments. Imperial College Press, LondonCrossRef
30.
Zurück zum Zitat Grafendorfer T, Conolly S, Sullivan C, Macovski A, Scott G (2005) Can Litz coils benefit SNR in remotely polarized MRI? In: Proceedings of the 13th annual meeting of ISMRM, Miami Beach, FL, USA, p 923 Grafendorfer T, Conolly S, Sullivan C, Macovski A, Scott G (2005) Can Litz coils benefit SNR in remotely polarized MRI? In: Proceedings of the 13th annual meeting of ISMRM, Miami Beach, FL, USA, p 923
31.
Zurück zum Zitat do Nascimento GC, de Souza RE, Engelsberg M (1989) A simple, ultralow magnetic field NMR imaging system. J Phys E Sci Instrum 22(9):774–779CrossRef do Nascimento GC, de Souza RE, Engelsberg M (1989) A simple, ultralow magnetic field NMR imaging system. J Phys E Sci Instrum 22(9):774–779CrossRef
32.
33.
Zurück zum Zitat Savukov I, Karaulanov T, Castro A, Volegov P, Matlashov A, Urbatis A, Gomez J, Espy M (2011) Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration. J Magn Reson 211:101–108CrossRefPubMedPubMedCentral Savukov I, Karaulanov T, Castro A, Volegov P, Matlashov A, Urbatis A, Gomez J, Espy M (2011) Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration. J Magn Reson 211:101–108CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat LaPierre C, Sarracanie M, Waddington DEJ, Rosen MS (2015) A single channel spiral volume coil for in vivo imaging of the whole human brain at 6.5 mT. In: Proceedings of the 23rd annual meeting of ISMRM, Toronto, ON, Canada, p 1793 LaPierre C, Sarracanie M, Waddington DEJ, Rosen MS (2015) A single channel spiral volume coil for in vivo imaging of the whole human brain at 6.5 mT. In: Proceedings of the 23rd annual meeting of ISMRM, Toronto, ON, Canada, p 1793
35.
Zurück zum Zitat Warf BC (2005) Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg 102(1 Suppl):1–15PubMed Warf BC (2005) Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg 102(1 Suppl):1–15PubMed
36.
Zurück zum Zitat Mandell JG, Kulkarni AV, Warf BC, Schiff SJ (2015) Volumetric brain analysis in neurosurgery: part 2. Brain and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. J Neurosurg Pediatr 15(2):125–132CrossRefPubMed Mandell JG, Kulkarni AV, Warf BC, Schiff SJ (2015) Volumetric brain analysis in neurosurgery: part 2. Brain and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. J Neurosurg Pediatr 15(2):125–132CrossRefPubMed
37.
Zurück zum Zitat Savukov I, Karaulanov T (2013) Magnetic-resonance imaging of the human brain with an atomic magnetometer. Appl Phys Lett 103(4):43703CrossRefPubMed Savukov I, Karaulanov T (2013) Magnetic-resonance imaging of the human brain with an atomic magnetometer. Appl Phys Lett 103(4):43703CrossRefPubMed
Metadaten
Titel
Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI
verfasst von
Steffen Lother
Steven J. Schiff
Thomas Neuberger
Peter M. Jakob
Florian Fidler
Publikationsdatum
09.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 4/2016
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0525-8

Weitere Artikel der Ausgabe 4/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.