Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2017

25.07.2017 | Research Article

Utilization of MR angiography in perfusion imaging for identifying arterial input function

verfasst von: Bora Buyuksarac, Mehmed Ozkan

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Objective

This research utilizes magnetic resonance angiography (MRA) to identify arterial locations during the parametric evaluation of concentration time curves (CTCs), and to prevent shape distortions in arterial input function (AIF).

Materials and methods

We carried out cluster analysis with the CTC parameters of voxels located within and around the middle cerebral artery (MCA). Through MRA, we located voxels that meet the AIF criteria and those with distorted CTCs. To minimize partial volume effect, we re-scaled the time integral of CTCs by the time integral of venous output function (VOF). We calculated the steady-state value to area under curve ratio (SS:AUC) of VOF and used it as a reference in selecting AIF. CTCs close to this reference value (selected AIF) and those far from it were used (eliminated AIF) to compute cerebral blood flow (CBF).

Results

Eliminated AIFs were found to be either on or anterior to MCA, whereas selected AIFs were located superior, inferior, posterior, or anterior to MCA. If the SS:AUC of AIF was far from the reference value, CBF was either under- or over-estimated by a maximum of 41.1 ± 14.3 and 36.6 ± 19.2%, respectively.

Conclusion

MRA enables excluding voxels on the MCA during cluster analysis, and avoiding the risk of shape distortions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265CrossRefPubMed Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265CrossRefPubMed
2.
Zurück zum Zitat Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725CrossRefPubMed Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725CrossRefPubMed
3.
Zurück zum Zitat Wirestam R, Andersson L, Ostergaard L, Bolling M, Aunola JP, Lindgren A, Geijer B, Holtås S, Ståhlberg F (2000) Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 43:691–700CrossRefPubMed Wirestam R, Andersson L, Ostergaard L, Bolling M, Aunola JP, Lindgren A, Geijer B, Holtås S, Ståhlberg F (2000) Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 43:691–700CrossRefPubMed
4.
Zurück zum Zitat Fritz-Hansen T, Rostrup E, Larsson HB, Søndergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231CrossRefPubMed Fritz-Hansen T, Rostrup E, Larsson HB, Søndergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231CrossRefPubMed
5.
Zurück zum Zitat Ellinger R, Kremser C, Schocke MF et al (2000) The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 24:942–948CrossRefPubMed Ellinger R, Kremser C, Schocke MF et al (2000) The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 24:942–948CrossRefPubMed
6.
Zurück zum Zitat Rausch M, Scheffler K, Rudin M, Radu EW (2000) Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn Reson Imaging 18:1235–1243CrossRefPubMed Rausch M, Scheffler K, Rudin M, Radu EW (2000) Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn Reson Imaging 18:1235–1243CrossRefPubMed
7.
Zurück zum Zitat Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122CrossRefPubMed Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122CrossRefPubMed
8.
Zurück zum Zitat Kjølby BF, Østergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197CrossRefPubMed Kjølby BF, Østergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197CrossRefPubMed
9.
Zurück zum Zitat van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22:704–709CrossRefPubMed van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22:704–709CrossRefPubMed
10.
Zurück zum Zitat Mlynash M, Eyngorn I, Bammer R, Moseley M, Tong DC (2005) Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. Am J Neuroradiol 26:1479–1486PubMed Mlynash M, Eyngorn I, Bammer R, Moseley M, Tong DC (2005) Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. Am J Neuroradiol 26:1479–1486PubMed
11.
Zurück zum Zitat Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55:524–531CrossRefPubMed Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55:524–531CrossRefPubMed
12.
Zurück zum Zitat Carroll TJ, Rowley HA, Haughton VM (2003) Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 227:593–600CrossRefPubMed Carroll TJ, Rowley HA, Haughton VM (2003) Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 227:593–600CrossRefPubMed
13.
Zurück zum Zitat Murase K, Kikuchi K, Miki H, Shimizu T, Ikezoe J (2001) Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. J Magn Reson Imaging 13:797–806CrossRefPubMed Murase K, Kikuchi K, Miki H, Shimizu T, Ikezoe J (2001) Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. J Magn Reson Imaging 13:797–806CrossRefPubMed
14.
Zurück zum Zitat Bjørnerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 30:1066–1078CrossRefPubMedPubMedCentral Bjørnerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 30:1066–1078CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Kim J, Leira EC, Callison RC, Ludwig B, Moritani T, Magnotta VA, Madsen MT (2010) Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke. Comput Methods Programs Biomed 98:204–213CrossRefPubMed Kim J, Leira EC, Callison RC, Ludwig B, Moritani T, Magnotta VA, Madsen MT (2010) Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke. Comput Methods Programs Biomed 98:204–213CrossRefPubMed
16.
Zurück zum Zitat Vonken EJ, van Osch MJP, Bakker CJG, Viergever MA (1999) Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 10:109–117CrossRefPubMed Vonken EJ, van Osch MJP, Bakker CJG, Viergever MA (1999) Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 10:109–117CrossRefPubMed
17.
Zurück zum Zitat Bleeker EJW, van Osch MJP, Connelly A, van Buchem MA, Webb AG, Calamante F (2011) New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magn Reson Med 65:448–456CrossRefPubMed Bleeker EJW, van Osch MJP, Connelly A, van Buchem MA, Webb AG, Calamante F (2011) New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magn Reson Med 65:448–456CrossRefPubMed
18.
Zurück zum Zitat Calamante F (2013) Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 74:1–32CrossRefPubMed Calamante F (2013) Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 74:1–32CrossRefPubMed
19.
Zurück zum Zitat Pedersen M, Klarhöfer M, Christensen S, Ouallet JC, Østergaard L, Dousset V, Moonen C (2004) Quantitative cerebral perfusion using the PRESTO acquisition scheme. J Magn Reson Imaging 20:930–940CrossRefPubMed Pedersen M, Klarhöfer M, Christensen S, Ouallet JC, Østergaard L, Dousset V, Moonen C (2004) Quantitative cerebral perfusion using the PRESTO acquisition scheme. J Magn Reson Imaging 20:930–940CrossRefPubMed
20.
Zurück zum Zitat Foottit C, Cron GO, Hogan MJ, Nguyen TB, Cameron I (2010) Determination of the venous output function from MR signal phase: feasibility for quantitative DCE-MRI in human brain. Magn Reson Med 63:772–781CrossRefPubMed Foottit C, Cron GO, Hogan MJ, Nguyen TB, Cameron I (2010) Determination of the venous output function from MR signal phase: feasibility for quantitative DCE-MRI in human brain. Magn Reson Med 63:772–781CrossRefPubMed
21.
Zurück zum Zitat Lorenz C, Benner T, Lopez CJ, Ay H, Zhu MW, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Effect of using local arterial input functions on cerebral blood flow estimation. J Magn Reson Imaging 24:57–65CrossRefPubMed Lorenz C, Benner T, Lopez CJ, Ay H, Zhu MW, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Effect of using local arterial input functions on cerebral blood flow estimation. J Magn Reson Imaging 24:57–65CrossRefPubMed
22.
Zurück zum Zitat Sourbron S, Luypaert R, Van Schuerbeek P, Dujardin M, Stadnik T (2004) Choice of the regularization parameter for perfusion quantification with MRI. Phys Med Biol 49:3307–3324CrossRefPubMed Sourbron S, Luypaert R, Van Schuerbeek P, Dujardin M, Stadnik T (2004) Choice of the regularization parameter for perfusion quantification with MRI. Phys Med Biol 49:3307–3324CrossRefPubMed
23.
Zurück zum Zitat Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34:561–580CrossRef Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34:561–580CrossRef
24.
Zurück zum Zitat Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRefPubMed Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRefPubMed
25.
Zurück zum Zitat Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151CrossRefPubMed Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151CrossRefPubMed
26.
Zurück zum Zitat Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–736CrossRefPubMed Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–736CrossRefPubMed
27.
Zurück zum Zitat Blockley NP, Jiang L, Gardener AG, Ludman CN, Francisr ST, Growland P (2008) Field strength dependence of R1 and R2* image relaxivities of human whole blood to ProHance, Vasovist, and deoxyhemoglobin. Magn Reson Med 60:1313–1320CrossRefPubMed Blockley NP, Jiang L, Gardener AG, Ludman CN, Francisr ST, Growland P (2008) Field strength dependence of R1 and R2* image relaxivities of human whole blood to ProHance, Vasovist, and deoxyhemoglobin. Magn Reson Med 60:1313–1320CrossRefPubMed
28.
Zurück zum Zitat Patil V, Johnson G (2013) ΔR2* gadolinium-diethylenetriaminepentacetic acid relaxivity in venous blood. Magn Reson Med 69:1104–1108CrossRefPubMed Patil V, Johnson G (2013) ΔR2* gadolinium-diethylenetriaminepentacetic acid relaxivity in venous blood. Magn Reson Med 69:1104–1108CrossRefPubMed
Metadaten
Titel
Utilization of MR angiography in perfusion imaging for identifying arterial input function
verfasst von
Bora Buyuksarac
Mehmed Ozkan
Publikationsdatum
25.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 6/2017
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0643-y

Weitere Artikel der Ausgabe 6/2017

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.