Skip to main content
Log in

Shear Stress Biology of the Endothelium

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The relationships between blood flow, mechanotransduction, and the localization of arterial lesions can now be advanced by the incorporation of new technologies and the refinement of existing methods in imaging modalities, computational modeling, fluid dynamics, and high throughput genomics and proteomics. When combined with traditional cell and molecular technologies, a powerful palette of investigative approaches is available to address shear stress biology of the endothelium at levels extending from nanoscale subcellular detailed mechanistic responses through to higher organizational levels of regional endothelial phenotypes and heterogeneous vascular beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakker, E. N., J. P. Versluis, P. Sipkema, J. W. VanTeeffelen, T. M. Rolf, J. A. Spaan, and E. VanBavel. Differential structural adaptation to haemodynamics along single rat cremaster arterioles. J. Physiol. 548:549–555, 2003.

    Article  Google Scholar 

  2. Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, P. Glenisson, F. C. P. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, A. Robinson, U. Sarkans, J. Stewart, R. Taylor, J. Vilo, and M. Vingron. Minimum information about a microarray experiment –MIAME –towards standards for microarray data. Nat. Genet. 29:365–371, 2001.

    Article  Google Scholar 

  3. Brooks, A. R., P. I. Lelkes, and G. M. Rubanyi. Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol. Genomics 9:27–41, 2002.

    Google Scholar 

  4. Caro, C. G., J. M. Fitzgerald, and R. C. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1161, 1969.

    Google Scholar 

  5. Chen, B. P., Y. S. Li, Y. Zhao, K.-D. Chen, S. Li, J. Lao, J. Y. Shyy, and S. Chien. DNA microarray analysis of gene expression in endothelial cells in response to 24 h shear stress. Physiol. Genomics 7:55–63, 2001.

    Google Scholar 

  6. Constantinescu, A. A., H. Vink, and J. A. Spaan. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler. Thromb. Vasc. Biol. 23:1541–1547, 2003.

    Google Scholar 

  7. Cornelissen, A. J., J. Dankelman, E. VanBavel, and J. A. Spaan. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: A model study. Am. J. Physiol. Heart Circ. Physiol. 282:H2224–H2237, 2002.

    Google Scholar 

  8. Cuff, C. A., D. Kothapalli, I. Azonobi, S. Chun, Y. Zhang, R. Belkin, C. Yeh, A. Secreto, R. K. Assoian, D. J. Rader, and E. Pure. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J. Clin. Invest. 108:1031–1040, 2001.

    Article  Google Scholar 

  9. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Google Scholar 

  10. Davies, P. F., A. Remuzzi, C. F. Dewey, E. J. Gordon, and M. A. Gimbrone Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA 83:2114–2118, 1986.

    Google Scholar 

  11. Davies, P. F., C. F. Dewey, S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone Jr. Influence of hemodynamic forces on vascular endothelial function: In vitro studies of shear stress and pinocytosis in cultured bovine aortic endothelial cells. J. Clin. Invest. 73:1121–1129, 1984.

    Google Scholar 

  12. Davies, P. F., D. C. Polacek, C. Shi, and B. P. Helmke. The Convergence of hemodynamics, genomics, and endothelial structure, in studies of the focal origin of atherosclerosis. Biorheology 39:299–306, 2002.

    Google Scholar 

  13. Davies, P. F., M. A. Reidy, T. B. Goode, and D. E. Bowyer. Scanning electron microscopy in the evaluation of endothelial integrity of the fatty streak lesion of atherosclerosis. Atherosclerosis 25:125–130, 1976.

    Article  Google Scholar 

  14. DePaola, N., P. F. Davies, W. P. Pritchard, and D. Polacek. Spatial regulation of gap junction connexin 43 in endothelial cells exposed to disturbed flows in vitro. Proc. Natl. Acad. Sci. USA 96:3154–3160, 1999.

    Article  Google Scholar 

  15. Dewey, C. F., M. A. Gimbrone Jr., S. R. Bussolari, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Engineering 103:177–185, 1981.

    Google Scholar 

  16. Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. Atherosclerosis 60:161–171, 1986.

    Article  Google Scholar 

  17. Fry, D. L., R. W. Mahley, K. H. Weisgraber, and S. Y. Oh. Simultaneous accumulation of Evans blue dye and albumin in the canine aortic wall. Am. J. Physiol. 233:H66–79, 1977.

    Google Scholar 

  18. Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. USA 98:4478–4485, 2001.

    Article  Google Scholar 

  19. Gimbrone, M. A., Jr., K. R. Anderson, J. N. Topper, B. L. Langille, A. W. Clowes, S. Bercel, M. G. Davies, K. R. Stenmark, M. G. Frid, M. C. Weiser-Evans, A. A. Aldashev, R. A. Nemenoff, M. W. Majesky, T. E. Landerholm, J. Lu, W. D. Ito, M. Arras, D. Scholz, B. Imhof, M. Aurrand-Lions, W. Schaper, T. E. Nagel, N., C. F. Dewey, and P. F. Davies. Special communication: The critical role of mechanical forces in blood vessel development, physiology and pathology. J. Vasc. Surg. 29:1104–1151, 2000.

    Google Scholar 

  20. Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316:1371–1375, 1987.

    Article  Google Scholar 

  21. Gnasso, A., C. Irace, C. Carallo, M. S. De Franceschi, C. Motti, P. L. Mattioli, and A. Pujia. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 28:993–998, 1997.

    Google Scholar 

  22. Govers, R., and T. J. Rabelink. Cellular regulation of endothelial nitric oxide synthase. Am. J. Physiol. Renal. Physiol. 280:F193–206, 2001.

    Google Scholar 

  23. Hacking, W. J. G., E. VanBavel, and J. A. E. Spaan. Shear stress is not sufficient to control growth of vascular networks: A model study. Am. J. Physiol. 270:H364–H375, 1996.

    Google Scholar 

  24. Hajra, L., A. I. Evans, M. Chen, S. J. Hyduk, T. Collins, and M. I. Cybulsky. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. USA 97:9052–9057, 2000.

    Article  Google Scholar 

  25. Helmke, B. P., A. B. Rosen, and P. F. Davies. Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84: 2691–2699, 2003.

    Google Scholar 

  26. Helmke, B. P., D. Thakker, R. D. Goldman, and P. F. Davies. Quantitative spatial analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys. J. 80:184–194, 2001.

    Article  Google Scholar 

  27. Honda, H. M., T. Hsiai, C. M. Wortham, M. Chen, H. Lin, M. Navab, and L. L. Demer. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells. Atherosclerosis 158:385–390, 2001.

    Article  Google Scholar 

  28. Hsiai, T. K., S. K. Cho, P. K. Wong, M. Ing, A. Salazar, A. Sevanian, M. Navab, L. L. Demer, and C. M. Ho. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. Faseb J. 17:1648–1657, 2003.

    Article  Google Scholar 

  29. Hull Jr., S. S., L. Kaiser, M. D. Jaffe, and H. V. Sparks Jr. Endothelium-dependent flow-induced dilation of canine femoral and saphenous arteries. Blood Vessels. 23:183–198, 1986.

    Article  Google Scholar 

  30. Kamiya, A., R. Bukhari, and T. Togawa. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol. 46:127–137, 1984.

    Article  Google Scholar 

  31. Khayutin, V. M., A. M. Melkumyants, A. N. Rogoza, E. S. Veselova, S. A. Balashov, and V. P. Nikolsky. Flow-induced control of arterial lumen. Acta Physiol. Hung. 68:241–251, 1986.

    Google Scholar 

  32. Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17:2061–2065, 1997.

    Google Scholar 

  33. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–301, 1985.

    Google Scholar 

  34. Kuo, L., W. M. Chilian, and M. J. Davis. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am. J. Physiol. 261:H1706–H1715, 1991.

    Google Scholar 

  35. Langille, B. L., and F. O'Donnel. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407, 1986.

    Google Scholar 

  36. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.

    Article  Google Scholar 

  37. Malek A. M., and S. Izumo. Control of endothelial cell gene expression by flow. J. Biomech. 28:1515–1528, 1995.

    Article  Google Scholar 

  38. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. 12:207–214, 1926.

    Google Scholar 

  39. Olesen, S. P., D. E. Clapham, and P. F. Davies. Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170, 1988.

    Article  Google Scholar 

  40. Passerini, A. G., D. C. Polacek, C. Shi, N. M. Francesco, E. Manduchi, G. Grant, W. P. Pritchard, S. J. Powell, G. Chang, C. Stoeckert, and P. F. Davies. Coexisting pro-inflammatory and anti-oxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. USA 101:2482–2487, 2004.

    Article  Google Scholar 

  41. Pohl, U., K. Herlan, A. Huang, and E. Bassenge. EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol. 261:H2016–H2023, 1991.

    Google Scholar 

  42. Polacek, D. C., A. Passerini, C. Shi, N. M. Francesco, E. Manduchi, G. Grant, S. J. Powell, H. Bischof, H. Winkler, C. Stoeckert, and P. F. Davies, Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiol. Genomics 13:147–156, 2003.

    Google Scholar 

  43. Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67:826–834, 1990.

    Google Scholar 

  44. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Design principles of vascular beds. Circ. Res. 77:1017–1023, 1995.

    Google Scholar 

  45. Remuzzi, A., C. F. Dewey, P. F. Davies, and M. A. Gimbrone Jr. Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–630, 1984.

    Google Scholar 

  46. Resnick, N., H. Yahav, L. M. Khachigian, T. Collins, K. R. Anderson, F. C. Dewey, and M. A. Gimbrone Jr. Endothelial gene regulation by laminar shear stress. Adv. Exp. Med. Biol. 430:155–164, 1997.

    Google Scholar 

  47. Schretzenmayr, A. Ueber kreislaufregulatorische vorgange an den groben arterien bei der muskelarbeit. Pflügers Archiv 232:743–748, 1933.

    Google Scholar 

  48. Shyy, J. Y., and S. Chien. Role of integrins in cellular responses to mechanical stress and adhesion. Curr. Opin. Cell. Biol. 9:707–713, 1997.

    Article  Google Scholar 

  49. Tzima, E., W. B. Kiosses, M. A. del Pozo, and M. A. Schwartz. Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J. Biol. Chem. 278:31020–31023, 2003.

    Article  Google Scholar 

  50. Van den Berg, B. M., H. Vink, and J. A. Spaan. The endothelial glycocalyx protects against myocardial edema. Circ. Res. 92:592–594, 2003.

    Article  Google Scholar 

  51. Van Haperen, R., C. Cheng, B. M. Mees, E. van Deel, M. de Waard, L. C. van Damme, T. van Gent, T. van Aken, R. Krams, D. J. Duncker, and R. de Crom. Functional expression of endothelial nitric oxide synthase fused to green fluorescent protein in transgenic mice. Am. J. Path. 163:1677–1686, 2003.

    Google Scholar 

  52. Wasserman, S. M., F. Mehraban, L. G. Komuves, R. B. Yang, J. E. Tomlinson, Y. Zhang, F. Spriggs, and J. N. Topper. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol. Genomics 12:13–23, 2002.

    Google Scholar 

  53. Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    Google Scholar 

  54. Wentzel, J. J., F. J. Gijsen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36:681–688, 2003.

    Article  Google Scholar 

  55. Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 33:1287–1295, 2000.

    Article  Google Scholar 

  56. Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–589, 1996.

    Google Scholar 

  57. Worth Longest, P., and C. Kleinstreuer. Comparison of blood particle deposition models for non-parallel flow domains. J. Biomech. 36:421–430, 2003.

    Article  Google Scholar 

  58. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, P.F., Spaan, J.A. & Krams, R. Shear Stress Biology of the Endothelium. Ann Biomed Eng 33, 1714–1718 (2005). https://doi.org/10.1007/s10439-005-8774-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8774-0

Keywords

Navigation