Skip to main content
Log in

Fatigue Performance of Composite Analogue Femur Constructs under High Activity Loading

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Synthetic mechanical analogue bone models are valuable tools for consistent analysis of implant performance in both equilibrium and fatigue biomechanical testing. Use of these models has previously been limited by the poor fatigue performance when tested under realistic service loads. An objective was to determine whether a new analogue bone model (Fourth-Generation) using enhanced analogue cortical bone provides significantly improved resistance to high load fracture and fatigue as compared to the current (Third-Generation) bone models in clinically relevant in situ type testing of total hip implants. Six Third-Generation and six Fourth-Generation mechanical analogue proximal femur models were implanted with a cemented mock hip arthroplasty. Each specimen was loaded at 5 Hz in simulated one-legged stance under load control with a maximum compressive load of 2670 N and load ratio of 0.1. Average complete structural failure in Third-Generation femurs occurred at 3.16 million cycles; all specimens exhibited substantial displacement and crazing at well below 3 million cycles. In contrast, all Fourth-Generation femurs sustained 10 million cycles without complete structural failure and showed little change in actuator deflection. The Fourth-Generation femur model performance was sufficient to allow the model to be used in biomechanically relevant load bearing levels with an intramedullary device without model compromise that would affect test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baleani M., L. Cristofolini, A. Toni. Initial stability of a new hybrid fixation hip stem: experimental measurement of implant-bone micromotion under torsional load in comparison with cemented and cementless stems. J. Biomed. Mater. Res. 50(4):605–615, 2000

    Article  PubMed  CAS  Google Scholar 

  2. Brown S. A., W. L. Gargar. The influence of temperature and specimen size on the flexural properties of PMMA bone cement. J. Biomed. Mater. Res. 18:523, 1984

    Article  PubMed  CAS  Google Scholar 

  3. Chao E. Y. S., H. C. Chin, R. N. Stauffer. Roentgenographic and mechanical performance of centrifuged cement in a simulated total hip arthroplasty model. Clin. Orthop. Rel. Res. 285:91–100, 1992

    Google Scholar 

  4. Chong, A. C. M., F. Miller, M. Buxton, and E. A. Friis. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J. Biomech. Eng. 2007 (In press)

  5. Cooke F. W. Comment on: static and fatigue properties of two new low-viscosity PMMA bone cements improved by vacuum mixing. J. Biomed. Mater. Res. 35(1):135–136, 1997

    Article  PubMed  CAS  Google Scholar 

  6. Crist B. D., B. R. Dart, P. J. Czuwala, B. W. Olney, C. D. Pence. Using flexible nails to improve stabilization of proximal femur fractures in adolescents. Am. J. Orthop. 35(1):37–41, 2006

    PubMed  Google Scholar 

  7. Cristofolini L., A. S. Teutonico, L. Monti, A. Cappello, A. Toni. Comparative in vitro study on the long term performance of cemented hip stems: validation of a protocol to discriminate between “good” and “bad” designs. J. Biomech. 36(11):1603–1615, 2003

    Article  PubMed  Google Scholar 

  8. Cristofolini L., M. Viceconti. Towards the standardization of in vitro load transfer investigations of hip prostheses. J. Strain Anal. Eng. Design 34(1):1–15, 1999

    Article  Google Scholar 

  9. Cristofolini L., M. Viceconti, A. Cappello, A. Toni. Mechanical validation of whole bone composite femur models. J. Biomech. 29(4):525–535, 1996

    Article  PubMed  CAS  Google Scholar 

  10. Cusick R. P., G. L. Lucas, D. A. McQueen, C. D. Graber. Construct stiffness of different fixation methods for supracondylar femoral fractures above total knee prostheses. Am. J. Orthop. 29(9):695–699, 2000

    PubMed  CAS  Google Scholar 

  11. Duda G. N., M. Heller, J. Albinger, O. Schulz, E. Schneider, L. Claes. Influence of muscle forces on femoral strain distribution. J. Biomech. 31(9):841–846, 1998

    Article  PubMed  CAS  Google Scholar 

  12. Finlay J. B., C. H. Rorabeck, R. B. Bourne, W. M. Tew. In vitro analysis of proximal femoral strains using PCA femoral implants and a hip-abductor muscle simulator. J. Arthroplasty 4(4):335–345, 1989

    Article  PubMed  CAS  Google Scholar 

  13. Firoozbakhsh K., K. Behzadi, T. A. DeCoster, M. S. Moneim, F. F. Naraghi. Mechanics of retrograde nail versus plate fixation for supracondylar femur fractures. J. Orthop. Trauma. 9(2):152–157, 1995

    Article  PubMed  CAS  Google Scholar 

  14. Gwyn D. T., B. W. Olney, B. R. Dart, P. J. Czuwala. Rotational control of various pediatric femur fractures stabilized with titanium elastic intramedullary nails. J. Pediatr. Orthop. 24(2):172–177, 2004

    PubMed  Google Scholar 

  15. Hansen, C. L., D. A. McQueen, E. A. Friis, F. W. Cooke, and C. W. Widenhouse. Porosity of neat and composite bone cement mantles. J. Arthroplasty 2007 (In press).

  16. Harman M. K., A. Toni, L. Cristofolini, M. Viceconti. Initial stability of uncemented hip stems: an in-vitro protocol to measure torsional interface motion. Med. Eng. Phys. 17(3):163–171, 1995

    Article  PubMed  CAS  Google Scholar 

  17. Heiner A. D., T. D. Brown. Structural properties of a new design of composite replicate femurs and tibias. J. Biomech. 34(6):773–781, 2001

    Article  PubMed  CAS  Google Scholar 

  18. Jaakkola J. I., D. W. Lundy, T. Moore, B. Jones, T. M. Ganey, W. C. Hutton. Supracondylar femur fracture fixation: mechanical comparison of the 95 degrees condylar side plate and screw versus 95 degrees angled blade plate. Acta Orthop. Scand. 73(1):72–76, 2002

    Article  PubMed  Google Scholar 

  19. Lee T. Q., M. I. Danto, W. C. Kim. Initial stability comparison of modular hip implants in synthetic femurs. Orthopedics 21(8):885–888, 1998

    PubMed  CAS  Google Scholar 

  20. Maher S. A., P. J. Prendergast, C. G. Lyons. Measurement of the migration of a cemented hip prosthesis in an in vitro test. Clin. Biomech. 16(4):307–314, 2001

    Article  CAS  Google Scholar 

  21. Manley T. M., L. S. Stern, G. Kotzar, B. N. Stulberg. Femoral component loosening in hip arthroplasty: cadaver study of subsidence and hoop strain. Acta Orthop. Scand. 58:485–490, 1987

    Article  PubMed  CAS  Google Scholar 

  22. McKellop H., E. Ebramzadeh, P. G. Niederer, A. Sarmiento. Comparison of the stability of press-fit hip prosthesis femoral stems using a synthetic model femur. J. Orthop. Res. 9(2):297–305, 1994

    Article  Google Scholar 

  23. McNamara B. P., L. Cristofolini, A. Toni, D. Taylor. Evaluation of experimental and finite element models of synthetic and cadaveric femora for pre-clinical design-analysis. Clin. Mater. 17(3):131–140, 1994

    Article  PubMed  CAS  Google Scholar 

  24. McNamara B. P., L. Cristofolini, A. Toni, D. Taylor. Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. J. Biomech. 30(6):621–630, 1997

    Article  PubMed  CAS  Google Scholar 

  25. Monti L., L. Cristofolini, A. Toni, R. G. Ceroni. In vitro testing of the primary stability of the VerSys enhanced taper stem: a comparative study in intact and intraoperatively cracked femora. Proc. Inst. Mech. Eng. [H] 215(1):75–83, 2001

    CAS  Google Scholar 

  26. Monti L., L. Cristofolini, M. Viceconti. Methods for quantitative analysis of the primary stability in uncemented hip prostheses. Artif. Organs 23(9):851–859, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Monti L., L. Cristofolini, M. Viceconti. Interface biomechanics of the Anca Dual fit hip stem: an in vitro experimental study. Proc. Inst. Mech. Eng. [H] 215(6):555–564, 2001

    CAS  Google Scholar 

  28. Munger P., C. Roder, U. Ackermann-Liebrich, A. Busato. Patient-related risk factors leading to aseptic stem loosening in total hip arthroplasty: a case–control study of 5,035 patients. Acta Orthop. 77(4):567–574, 2006

    Article  PubMed  Google Scholar 

  29. Namba R. S., L. Paxton, D. C. Fithian, M. L. Stone. Obesity and perioperative morbidity in total hip and total knee arthroplasty patients. J. Arthoplasty 20(7):46–50, 2005

    Article  Google Scholar 

  30. Otani T., L. A. Whiteside, S. E. White. Strain distribution in the proximal femur with flexible composite and metallic femoral components under axial and torsional loads. J. Biomed. Mat. Res. 27(5):575–585, 1993

    Article  CAS  Google Scholar 

  31. Pearson, G. P., D. F. Jones, and V. Wright. Effect of operating-theatre temperatures on the setting-times of acrylic cements for use in orthopaedic surgery. Lancet 26:184, 1975

    Google Scholar 

  32. Popkin B. M., Using research on the obesity pandemic as a guide to a unified vision of nutrition. Public Health Nutr. 8(6A):724–729, 2005

    Article  PubMed  Google Scholar 

  33. Prayson M. J., D. K. Datta, M. P. Marshall. Mechanical comparison of endosteal substitution and lateral plate fixation in supracondylar fractures of the femur. J. Orthop. Trauma. 15(2):96–100, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Stolk J., N. Verdonschot, L. Cristofolini, A. Toni, R. Huiskes. Finite element and experimental models of cemented hip joint reconstructions can produce similar bone and cement strains in pre-clinical tests. J. Biomech. 35(4):499–510, 2002

    Article  PubMed  CAS  Google Scholar 

  35. Szivek J. A., R. L. Gealer. Comparison of the deformation response of synthetic and cadaveric femora during simulated one-legged stance. J. Appl. Biomat. 2(4):277–280, 1991

    Article  CAS  Google Scholar 

  36. Tai C. L., M. S. Lee, W. P. Chen, P. H. Hsieh, P. C. Lee, C. H. Shih. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis—an experimental study. Biomed. Mater. Eng. 15(3):239–249, 2005

    PubMed  Google Scholar 

  37. Verdonschot N., M. Barink, J. Stolk, J. W. Gardeniers, B. W. Schreurs. Do unloading periods affect migration characteristics of cemented femoral components? An in vitro evaluation with the Exeter stem. Acta Orthop. Belgica 68(4):348–355, 2002

    CAS  Google Scholar 

  38. Viceconti, M., L. Cristofolini, and A. Toni. Design revision of a partially cemented hip stem. Proc. Inst. Mech. Eng. [H]. 215(5):471–478, 2001

    Google Scholar 

  39. Voor M. J., D. A. Verst, S. W. Mladsi, C. Khalily, D. Seligson. Fatigue properties of a twelve-hole versus a five-hole intramedullary supracondylar nail. J. Orthop. Trauma. 11(2):98–102, 1997

    Article  PubMed  CAS  Google Scholar 

  40. Waide V., L. Cristofolini, A. Toni. A CAD-CAM methodology to produce bone-remodelled composite femurs for preclinical investigations. Proc. I MECH E Part H, J. Eng. Med. 215(5):459–469, 2001

    CAS  Google Scholar 

  41. Whitaker, C., P. J. Czuwala, D. A. McQueen, F. W. Cooke, and E. A. Friis. Subsidence rate of polished femoral prostheses: effect of bone cement porosity. Trans. American Academy of Orthopaedic Surgeons, New Orleans, LA, P063, 2003

  42. https://secure.sawbones.com/products/bio/composite.asp, Sawbones® Worldwide, Pacific Research Laboratories, Inc., Vashon, WA. Accessed June 1, 2006

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support and supplies donations from Pacific Research Laboratories, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Friis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, A.C.M., Friis, E.A., Ballard, G.P. et al. Fatigue Performance of Composite Analogue Femur Constructs under High Activity Loading. Ann Biomed Eng 35, 1196–1205 (2007). https://doi.org/10.1007/s10439-007-9284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9284-z

Keywords

Navigation