Skip to main content

Advertisement

Log in

Methods for Quantifying Three-Dimensional Deformation of Arteries due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The knowledge of dynamic changes in the vascular system has become increasingly important in ensuring the safety and efficacy of endovascular devices. We developed new methods for quantifying in vivo three-dimensional (3D) arterial deformation due to pulsatile and nonpulsatile forces. A two-dimensional threshold segmentation technique combined with a level set method enabled calculation of the consistent centroid of the cross-sectional vessel lumen, whereas an optimal Fourier smoothing technique was developed to eliminate spurious irregularities of the centerline connecting the centroids. Longitudinal strain and novel metrics for axial twist and curvature change were utilized to characterize 3D deformations of the abdominal aorta, common iliac artery, and superficial femoral artery (SFA) due to musculoskeletal motion and deformations of the coronary artery due to cardiac pulsatile motion. These illustrative applications show the significance of each deformation metric, revealing significant longitudinal strain and axial twist in the SFA and coronary artery, and pronounced changes in vessel curvature in the coronary artery and in the inferior region of the SFA. The proposed methods may aid in designing preclinical tests aimed at replicating dynamic in vivo conditions in the arterial tree for the purpose of developing more durable endovascular devices including stents and stent grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11

Similar content being viewed by others

References

  1. Arena F. J. 2005 Arterial kink and damage in normal segments of the superficial femoral and popliteal arteries abutting nitinol stents—a common cause of late occlusion and restenosis? A single-center experience. J. Invasive Cardiol. 17, 482–486

    PubMed  Google Scholar 

  2. Bessias N., G. Sfyroeras, K. G. Moulakakis, F. Karakasis, E. Ferentinou, V. Andrikopoulos 2005 Renal artery thrombosis caused by stent fracture in a single kidney patient. J. Endovasc. Ther. 12, 516–520. doi:10.1583/05-1542.1

    Article  PubMed  Google Scholar 

  3. Blemker S. S., P. M. Pinsky, S. L. Delp 2005 A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38, 657–665. doi:10.1016/j.jbiomech.2004.04.009

    Article  PubMed  Google Scholar 

  4. Bockler D., H. von Tengg-Kobligk, H. Schumacher, S. Ockert, M. Schwarzbach, J. R. Allenberg 2005 Late surgical conversion after thoracic endograft failure due to fracture of the longitudinal support wire. J. Endovasc. Ther. 12, 98–102. doi:10.1583/04-1328.1

    Article  PubMed  Google Scholar 

  5. Boskamp T., D. Rinck, F. Link, B. Kummerlen, G. Stamm, P. Mildenberger 2004 New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics 24, 287–297. doi:10.1148/rg.241035073

    Article  PubMed  Google Scholar 

  6. Browse N. L., A. E. Young, M. L. Thomas 1979 The effect of bending on canine and human arterial walls and on blood flow. Circ. Res. 45, 41–47

    PubMed  CAS  Google Scholar 

  7. Bullitt E., G. Gerig, S. M. Pizer, W. Lin, S. R. Aylward 2003 Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging 22, 1163–1171. doi:10.1109/TMI.2003.816964

    Article  PubMed  Google Scholar 

  8. Burt H. M., W. L. Hunter 2006 Drug-eluting stents: a multidisciplinary success story. Adv. Drug Deliv. Rev. 58, 350–357. doi:10.1016/j.addr.2006.01.014

    Article  PubMed  CAS  Google Scholar 

  9. Chen S. Y., J. D. Carroll, J. C. Messenger 2002 Quantitative analysis of reconstructed 3-D coronary arterial tree and intracoronary devices. IEEE Trans. Med. Imaging 21, 724–740. doi:10.1109/TMI.2002.801151

    Article  PubMed  Google Scholar 

  10. Cheng C. P., N. M. Wilson, R. L. Hallett, R. J. Herfkens, C. A. Taylor 2006 In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J. Vasc. Interv. Radiol. 17, 979–987

    Article  PubMed  Google Scholar 

  11. Chowdhury P. S., R. G. Ramos 2002 Images in clinical medicine. Coronary-stent fracture. N. Engl. J. Med. 347, 581. doi:10.1056/NEJMicm020259

    Article  PubMed  Google Scholar 

  12. de Vries J. P., R. W. Meijer, J. C. van den Berg, J. M. Meijer, E. D. van de Pavoordt 2005 Stent fracture after endoluminal repair of a carotid artery pseudoaneurysm. J. Endovasc. Ther. 12, 612–615. doi:10.1583/05-1597.1

    Article  PubMed  Google Scholar 

  13. Ding Z., H. Zhu, M. H. Friedman 2002 Coronary artery dynamics in vivo. Ann. Biomed. Eng. 30, 419–429. doi:10.1114/1.1467925

    Article  PubMed  Google Scholar 

  14. Dougherty G., J. Varro 2000 A quantitative index for the measurement of the tortuosity of blood vessels. Med. Eng. Phys. 22, 567–574. doi:10.1016/S1350-4533(00)00074-6

    Article  PubMed  CAS  Google Scholar 

  15. Draney, M. T., M. T. Alley, B. T. Tang, N. M. Wilson, R. J. Herfkens, and C. A. Taylor. Importance of 3D nonlinear gradient corrections for quantitative analysis of 3D MR angiographic data. In: Proceedings of the International Society for Magnetic Resonance in Medicine. Honolulu, HI, 2002

  16. Draney M. T., C. K. Zarins, C. A. Taylor 2005 Three-dimensional analysis of renal artery bending motion during respiration. J. Endovasc. Ther. 12, 380–386. doi:10.1583/05-1530.1

    Article  PubMed  Google Scholar 

  17. Duda S. H., M. Bosiers, J. Lammer, D. Scheinert, T. Zeller, A. Tielbeek, J. Anderson, B. Wiesinger, G. Tepe, A. Lansky, C. Mudde, H. Tielemans, J. P. Beregi 2005 Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J. Vasc. Interv. Radiol. 16, 331–338

    PubMed  Google Scholar 

  18. Duda S. H., B. Pusich, G. Richter, P. Landwehr, V. L. Oliva, A. Tielbeek, B. Wiesinger, J. B. Hak, H. Tielemans, G. Ziemer, E. Cristea, A. Lansky, J. P. Beregi 2002 Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: Six-month results. Circulation 106, 1505–1509. doi:10.1161/01.CIR.0000029746.10018.36

    Article  PubMed  CAS  Google Scholar 

  19. El-Menyar A. A., J. Al Suwaidi, D. R. Holmes Jr. 2007 Left main coronary artery stenosis: state-of-the-art. Curr. Probl. Cardiol. 32, 103–193. doi:10.1016/j.cpcardiol.2006.12.002

    Article  PubMed  Google Scholar 

  20. Eze C. U., R. Gupta, D. L. Newman 2000 A comparison of quantitative measures of arterial tortuosity using sine wave simulations and 3D wire models. Phys. Med. Biol. 45, 2593–2599. doi:10.1088/0031-9155/45/9/312

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Garcia H. M., S. Vaina, K. Tsuchida, P. W. Serruys 2006 Drug-eluting stents. Arch. Cardiol. Mex 76, 297–319

    PubMed  CAS  Google Scholar 

  22. Goodney P. P., R. J. Powell 2008 Carotid artery stenting: what have we learned from the clinical trials and registries and where do we go from here? Ann. Vasc. Surg. 22, 148–158. doi:10.1016/j.avsg.2007.10.002

    Article  PubMed  Google Scholar 

  23. Gross M. F., M. H. Friedman 1998 Dynamics of coronary artery curvature obtained from biplane cineangiograms. J. Biomech. 31, 479–484. doi:10.1016/S0021-9290(98)00012-8

    Article  PubMed  CAS  Google Scholar 

  24. Helmus M. N., D. F. Gibbons, D. Cebon 2008 Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol. Pathol. 36, 70–80. doi:10.1177/0192623307310949

    Article  PubMed  CAS  Google Scholar 

  25. Jacobs T. S., J. Won, E. C. Gravereaux, P. L. Faries, N. Morrissey, V. J. Teodorescu, L. H. Hollier, M. L. Marin 2003 Mechanical failure of prosthetic human implants: a 10-year experience with aortic stent graft devices. J. Vasc. Surg. 37, 16–26. doi:10.1067/mva.2003.58

    Article  PubMed  Google Scholar 

  26. Ledesma M., R. Jauregui, C. K. Ceron, J. E. Gallegos, C. A. Espinoza, R. Arguero, T. Feldman 2003 Stent fracture after stent therapy for aortic coarctation. J. Invasive Cardiol. 15, 719–721

    PubMed  Google Scholar 

  27. Lewiner T., J.D. Gomes Jr., H. Lopes, M. Craizer 2005 Curvature and torsion estimators based on parametric curve fitting. Comput. Graphics 29, 641–655. doi:10.1016/j.cag.2005.08.004

    Article  Google Scholar 

  28. Liao R., S. Y. Chen, J. C. Messenger, B. M. Groves, J. E. Burchenal, J. D. Carroll 2002 Four-dimensional analysis of cyclic changes in coronary artery shape. Catheter Cardiovasc. Interv. 55, 344–354. doi:10.1002/ccd.10106

    Article  PubMed  Google Scholar 

  29. Liao R., N. E. Green, S. Y. Chen, J. C. Messenger, A. R. Hansgen, B. M. Groves, J. D. Carroll 2004 Three-dimensional analysis of in vivo coronary stent–coronary artery interactions. Int. J. Cardiovasc. Imaging 20, 305–313. doi:10.1023/B:CAIM.0000041950.84736.e6

    Article  PubMed  Google Scholar 

  30. Medina, R., A. Wahle, M. E. Olszewski, and M. Sonka. Curvature and torsion estimation for coronary-artery motion analysis. In: Proceedings of the SPIE, 2004

  31. Morrison, T. M., G. Choi, C. K. Zarins, and C. A. Taylor. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J. Vasc. Surg., 2008 (submitted)

  32. Nowakowski F. S., H. J. Freeman 2003 Endovascular therapy for atherosclerotic occlusion and stenosis from the infrarenal aorta to the infrapopliteal arteries. Mt. Sinai J. Med. 70, 393–400

    PubMed  Google Scholar 

  33. O’Flynn P. M., G. O’Sullivan, A. S. Pandit 2007 Methods for three-dimensional geometric characterization of the arterial vasculature. Ann. Biomed. Eng. 35, 1368–1381. doi:10.1007/s10439-007-9307-9

    Article  PubMed  Google Scholar 

  34. Prosi M., K. Perktold, Z. Ding, M. H. Friedman 2004 Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37, 1767–1775. doi:10.1016/j.jbiomech.2004.01.021

    Article  PubMed  Google Scholar 

  35. Puentes J., C. Roux, M. Garreau, J. L. Coatrieux 1998 Dynamic feature extraction of coronary artery motion using DSA image sequences. IEEE Trans. Med. Imaging 17, 857–871. doi:10.1109/42.746619

    Article  PubMed  CAS  Google Scholar 

  36. Rocha-Singh K., M. R. Jaff, K. Rosenfield 2005 Evaluation of the safety and effectiveness of renal artery stenting after unsuccessful balloon angioplasty: the ASPIRE-2 study. J. Am. Coll. Cardiol. 46, 776–783. doi:10.1016/j.jacc.2004.11.073

    Article  PubMed  Google Scholar 

  37. Sacks B. A., A. Miller, M. Gottlieb 1996 Fracture of an iliac artery Palmaz stent. J. Vasc. Interv. Radiol. 7, 53–55. doi:10.1016/S1051-0443(96)70733-9

    Article  PubMed  CAS  Google Scholar 

  38. Sahin S., A. Memis, M. Parildar, I. Oran 2005 Fracture of a renal artery stent due to mobile kidney. Cardiovasc. Intervent. Radiol. 28, 683–685. doi:10.1007/s00270-004-0337-5

    Article  PubMed  Google Scholar 

  39. Scheinert D., S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich, M. Ulrich, G. Biamino, A. Schmidt 2005 Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45, 312–315. doi:10.1016/j.jacc.2004.11.026

    Article  PubMed  Google Scholar 

  40. Smedby O. 1998 Geometrical risk factors for atherosclerosis in the femoral artery: a longitudinal angiographic study. Ann. Biomed. Eng. 26, 391–397. doi:10.1114/1.121

    Article  PubMed  CAS  Google Scholar 

  41. Smedby O., L. Bergstrand 1996 Tortuosity and atherosclerosis in the femoral artery: what is cause and what is effect? Ann. Biomed. Eng. 24, 474–480. doi:10.1007/BF02648109

    Article  PubMed  CAS  Google Scholar 

  42. Smedby O., N. Hogman, S. Nilsson, U. Erikson, A. G. Olsson, G. Walldius 1993 Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. J. Vasc. Res. 30, 181–191. doi:10.1159/000158993

    Article  PubMed  CAS  Google Scholar 

  43. Smedby O., J. Johansson, J. Molgaard, A. G. Olsson, G. Walldius, U. Erikson 1995 Predilection of atherosclerosis for the inner curvature in the femoral artery. A digitized angiography study. Arterioscler. Thromb. Vasc. Biol. 15, 912–917

    PubMed  CAS  Google Scholar 

  44. Smedby O., S. Nilsson, L. Bergstrand 1996 Development of femoral atherosclerosis in relation to flow disturbances. J. Biomech. 29, 543–547. doi:10.1016/0021-9290(95)00070-4

    Article  PubMed  CAS  Google Scholar 

  45. Smouse, H. B., A. Nikanorov, and D. Laflashi. Biomechancial forces in the femoropopliteal arterial segment. Endovasc. Today June:60–66, 2005

  46. Solis J., S. Allaqaband, T. Bajwa 2006 A case of popliteal stent fracture with pseudoaneurysm formation. Catheter Cardiovasc. Interv. 67, 319–322. doi:10.1002/ccd.20600

    Article  PubMed  Google Scholar 

  47. Veith F. J., W. M. Abbott, J. S. Yao, J. Goldstone, R. A. White, D. Abel, M. D. Dake, C. B. Ernest, T. J. Fogarty, K. W. Johnston, et al. 1995 Guidelines for development and use of transluminally placed endovascular prosthetic grafts in the arterial system. Endovascular graft committee. J. Vasc. Surg. 21, 670–685. doi:10.1016/S0741-5214(95)70198-2

    Article  PubMed  CAS  Google Scholar 

  48. Wang, K. C., C. A. Taylor, Z. Hsiau, D. Parker, and R. W. Dutton. Level set methods and MR image segmentation for geometric modeling in computational hemodynamics. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, pp. 3079–3082, 1998

  49. Wenn C. M., D. L. Newman 1990 Arterial tortuosity. Australas. Phys. Eng. Sci. Med. 13, 67–70

    PubMed  CAS  Google Scholar 

  50. Wensing P. J., F. G. Scholten, P. C. Buijs, M. J. Hartkamp, W. P. Mali, B. Hillen 1995 Arterial tortuosity in the femoropopliteal region during knee flexion: a magnetic resonance angiographic study. J. Anat. 187(Pt 1), 133–139

    PubMed  Google Scholar 

  51. Weon Y. C., S. G. Kang, J. W. Chung, Y. I. Kim, J. H. Park, D. Y. Lee 2006 Technical feasibility and biocompatibility of a newly designed separating stent-graft in the normal canine aorta. AJR Am. J. Roentgenol. 186, 1148–1154. doi:10.2214/AJR.05.0683

    Article  PubMed  Google Scholar 

  52. Wilson N. M., K. C. Wang, R. W. Dutton, C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. In: Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science, Vol. 2208, pp. 449–456, 2001

  53. Wood N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, X. Y. Xu 2006 Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101, 1412–1418. doi:10.1152/japplphysiol.00051.2006

    Article  PubMed  CAS  Google Scholar 

  54. Zeller T. 2007 Current state of endovascular treatment of femoro-popliteal artery disease. Vasc. Med. 12, 223–234. doi:10.1177/1358863X07079823

    Article  PubMed  Google Scholar 

  55. Zerhouni E. A., D. M. Parish, W. J. Rogers, A. Yang, E. P. Shapiro 1988 Human heart: tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 169, 59–63

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Anne Sawyer and the staff of the Richard M. Lucas Center for Magnetic Resonance Imaging at Stanford for assistance with the imaging studies. This work was supported by the National Institutes of Health (P41 RR09784, U54 GM072970) and the National Science Foundation (0205741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, G., Cheng, C.P., Wilson, N.M. et al. Methods for Quantifying Three-Dimensional Deformation of Arteries due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts. Ann Biomed Eng 37, 14–33 (2009). https://doi.org/10.1007/s10439-008-9590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9590-0

Keywords

Navigation