Skip to main content
Log in

Hemodynamic Performance of Stage-2 Univentricular Reconstruction: Glenn vs. Hemi-Fontan Templates

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Flow structures, hemodynamics and the hydrodynamic surgical pathway resistances of the final stage functional single ventricle reconstruction, namely the total cavopulmonary connection (TCPC) anatomy, have been investigated extensively. However, the second stage surgical anatomy (i.e., bi-directional Glenn or hemi-Fontan template) has received little attention. We thus initiated a multi-faceted study, involving magnetic resonance imaging (MRI), phase contrast MRI, computational and experimental fluid dynamics methodologies, focused on the second stage of the procedure. Twenty three-dimensional computer and rapid prototype models of 2nd stage TCPC anatomies were created, including idealized parametric geometries (n = 6), patient-specific anatomies (n = 7), and their virtual surgery variant (n = 7). Results in patient-specific and idealized models showed that the Glenn connection template is hemodynamically more efficient with (83% p = 0.08 in patient-specific models and 66% in idealized models) lower power losses compared to hemi-Fontan template, respectively, due to its direct end-to-side anastomosis. Among the several secondary surgical geometrical features, stenosis at the SVC anastomosis or in pulmonary branches was found to be the most critical parameter in increasing the power loss. The pouch size and flare shape were found to be less significant. Compared to the third stage surgery the hydrodynamic resistance of the 2nd stage is considerably lower (both in idealized models and in anatomical models at MRI resting conditions) for both hemi- and Glenn templates. These results can impact the surgical design and planning of the staged TCPC reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Azakie A., McCrindle B. W., Van Arsdell G., Benson L. N., Coles J., Hamilton R., Freedom R. M., Williams W. G. 2001, Extracardiac conduit versus lateral tunnel cavopulmonary connections at a single institution: impact on outcomes, J. Thorac. Cardiovasc. Surg., 122(6), 1219–1228. doi:10.1067/mtc.2001.116947

    Article  PubMed  CAS  Google Scholar 

  2. Bando, K., M. W. Turrentine, H. J. Park, T. G. Sharp, V. Scavo, and J. W. Brown. Evolution of the Fontan procedure in a single center. Ann. Thorac. Surg. 69(1873–9), 2000. doi:10.1016/S0003-4975(00)01316-3

  3. Bove E. L., de Leval M. R., Migliavacca F., Guadagni G., Dubini G., 2003, Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome, J. Thorac. Cardiovasc. Surg., 126(4), 1040–1047. doi:10.1016/S0022-5223(03)00698-6

    Article  PubMed  Google Scholar 

  4. Cebral J. R., Castro M. A., Burgess J. E., Pergolizzi R. S., Sheridan M. J., Putman C. M., 2005, Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am. J. Neuroradiol., 26(10), 2550–2559

    PubMed  Google Scholar 

  5. Dasi, L. P., K. Pekkan, K. Whitehead, M. Fogel, and A. P. Yoganathan. Hepatic blood flow distribution in the total cavopulmonary connection: patient-specific anatomical models. In: ASME 2007 Summer Bioengineering Conference (SBC2007), P. o. t. ASME, edited by Keystone Resort & Conference Center, Keystone, Colorado, 2007

  6. Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41(10):2246–2252, 2008

    Article  PubMed  Google Scholar 

  7. Degroff, C. G. Modeling the Fontan circulation: where we are and where we need to go. Pediatr. Cardiol. 29(1):3–12, 2008

    Article  PubMed  CAS  Google Scholar 

  8. Douglas W. I., Goldberg C. S., Mosca R. S., Law I. H., Bove E. L., 1999, Hemi-Fontan procedure for hypoplastic left heart syndrome: outcome and suitability for Fontan, Ann. Thorac. Surg., 68, 1361–1368. doi:10.1016/S0003-4975(99)00915-7

    Article  PubMed  CAS  Google Scholar 

  9. Ensley A. E., Lynch P., Chatzimavroudis G. P., Lucas C., Sharma S., Yoganathan A. P., 1999, Toward designing the optimal total cavopulmonary connection: an in vitro study, Ann. Thorac. Surg., 68(4), 1384–1390. doi:10.1016/S0003-4975(99)00560-3

    Article  PubMed  CAS  Google Scholar 

  10. Ensley A. E., Ramuzat A., Healy T. M., Chatzimavroudis G. P., Lucas C., Sharma S., Pettigrew R., Yoganathan A. P., 2000, Fluid mechanic assessment of the total cavopulmonary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry, Ann. Biomed. Eng., 28(10), 1172–1183. doi:10.1114/1.1317533

    Article  PubMed  CAS  Google Scholar 

  11. Fiore A. C., Turrentine M., Rodefeld M., Vijay P., Schwartz T. L., Virgo K. S., Fischer L. K., Brown J. W., 2007, Fontan operation: a comparison of lateral tunnel with extracardiac conduit, Ann. Thorac. Surg., 83, 622–630. doi:10.1016/j.athoracsur.2006.09.070

    Article  PubMed  Google Scholar 

  12. Fogel M. A., Weinberg P. M., Rychik J., Hubbard A., Jacobs M., Spray T. L., Haselgrove J., 1999, Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse, Circulation, 99(9), 1215–1221

    PubMed  CAS  Google Scholar 

  13. Fontan F., Baudet E., 1971, Surgical repair of tricuspid atresia, Thorax, 26(3), 240–248

    Article  PubMed  CAS  Google Scholar 

  14. Fontan F., Kirklin J. W., Fernandez G., Costa F., Naftel D. C., Tritto F., Blackstone E. H., 1990, Outcome after a “perfect” Fontan operation, Circulation, 81(5), 1520–1536

    PubMed  CAS  Google Scholar 

  15. Frakes D. H., Conrad C. P., Healy T. M., Monaco J. W., Fogel M., Sharma S., Smith M. J., Yoganathan A. P., 2003, Application of an adaptive control grid interpolation technique to morphological vascular reconstruction, IEEE Trans. Biomed. Eng., 50(2), 197–206. doi:10.1109/TBME.2002.807651

    Article  PubMed  Google Scholar 

  16. Frakes, D. H., L. P. Dasi, K. Pekkan, H. D. Kitajima, K. Sundareswaran, A. P. Yoganathan, and M. J. Smith. A new method for registration-based medical image interpolation. IEEE Trans. Med. Imaging 27(3):370–377, 2008

    Article  PubMed  Google Scholar 

  17. Frakes D. H., Smith M. J., Parks J., Sharma S., Fogel S. M., Yoganathan A. P., 2005, New techniques for the reconstruction of complex vascular anatomies from MRI images, J. Cardiovasc. Magn. Reson., 7(2), 425–432. doi:10.1081/JCMR-200053637

    Article  PubMed  Google Scholar 

  18. Frakes D., Smith M. J. T., Zelicourt D., Pekkan K., Yoganathan A. P., 2004, Three-dimensional velocity field reconstruction, J. Biomech. Eng., 126(6), 727–735. doi:10.1115/1.1824117

    Article  PubMed  Google Scholar 

  19. Giroud J. M., Jacobs J. P., 2006, Fontan’s operation: evolution from a procedure to a process, Cardiol. Young, 16(Suppl 1), 67–71. doi:10.1017/S1047951105002350

    Article  PubMed  Google Scholar 

  20. Guyton A. C., ed., 1961, Cardiac Output and Venous Return, and Their Regulation, Saunders, Philadelphia, PA

    Google Scholar 

  21. Guyton A. C., Abernathy B., Langston J. B., Kaufmann B. N., Fairchild H. M., 1959, Relative importance of venous and arterial resistances in controlling venous return and cardiac output, Am. J. Physiol., 196(5), 1008–1014

    PubMed  CAS  Google Scholar 

  22. Guyton A. C., Lindsey A. W., Kaufmann B. N., 1955, Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output, Am. J. Physiol., 180(3), 463–468

    PubMed  CAS  Google Scholar 

  23. Hirsch J. C., Ohye R. G., Devaney E. J., Goldberg C. S., Bove E. L., 2007, The lateral tunnel fontan procedure for hypoplastic left heart syndrome: results of 100 consecutive patients, Pediatr. Cardiol. 28: 426–432

    Article  PubMed  CAS  Google Scholar 

  24. Hosein R. B., Clarke A. J., McGuirk S. P., Griselli M., Stumper O., De Giovanni J. V., Barron D. J., Brawn W. J., 2007, Factors influencing early and late outcome following the Fontan procedure in the current era. The ‘Two Commandments’?, Eur. J. Cardiothorac. Surg., 31(3), 344–352; doi:10.1016/j.ejcts.2006.11.043 discussion 353

    Article  PubMed  Google Scholar 

  25. Kaulitz R., Hofbeck M., 2005, Current treatment and prognosis in children with functionally univentricular hearts Arch. Dis. Child., 90, 757–762. doi:10.1136/adc.2003.034090

    Article  PubMed  CAS  Google Scholar 

  26. Kelly J. R., Mack G. W., Fahey J. T., 1995, Diminished venous vascular capacitance in patients with univentricular hearts after the Fontan operation, Am. J. Cardiol., 76, 158–163. doi:10.1016/S0002-9149(99)80049-6

    Article  Google Scholar 

  27. Krishnankuttyrema, R., L. Dasi, K. Pekkan, K. Sundareswaran, H. Kitajima, and A. P. Yoganathan. A unidimensional representation of the total cavopulmonary connection. In: ASME 2007 Summer Bioengineering Conference (SBC2007), P. o. t. ASME, edited by Keystone Resort & Conference Center, Keystone, Colorado, 2007

  28. Kumar S. P., Rubinstein C. S., Simsic J. M., Taylor A. B., Saul J. P., Bradley S. M., 2003, Lateral tunnel versus extracardiac conduit fontan procedure: a concurrent comparison, Ann. Thorac. Surg., 76(5), 1389–1397. doi:10.1016/S0003-4975(03)01010-5

    Article  PubMed  Google Scholar 

  29. Lee J. R., Kwak J. G., Kim K. J., Min S. K., Kim W., Kim Y. J., Rhoa J. R., 2007, Comparison of lateral tunnel and extracardiac conduit Fontan procedure, Interact. Cardiovasc. Thorac. Surg., 6, 328–330. doi:10.1510/icvts.2006.146928

    Article  PubMed  Google Scholar 

  30. de Leval M., 1988, The Fontan circulation: what have we learned? What to expect?, Pediatr. Cardiol., 19(4), 316–320. doi:10.1007/s002469900315

    Article  Google Scholar 

  31. de Leval M., 2005, The Fontan circulation: a challenge to William Harvey?, Nat. Clin. Pract. Cardiovasc. Med., 2(4), 202–208. doi:10.1038/ncpcardio0157

    Article  PubMed  Google Scholar 

  32. de Leval M. R., Kilner P., Gewillig M., Bull C., 1988, Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience, J. Thorac. Cardiovasc. Surg., 96(5), 682–695

    PubMed  Google Scholar 

  33. Mace L., Dervanian P., Bourriez A., Mazmanian G. M., Lambert V., Neveux J., 2000, Changes in venous return parameters associated with univentricle Fontan circulations, Am. J. Physiol. Heart Circ. Physiol., 279, H2335–H2343

    PubMed  CAS  Google Scholar 

  34. Magosso E., Cavalcanti S., Ursino M., 2002, Theoretical analysis of rest and exercise hemodynamics in patients with total cavopulmonary connection, Am. J. Physiol. Heart Circ. Physiol., 282, H1018–H1034

    PubMed  CAS  Google Scholar 

  35. Masters J. C., Ketner M., Bleiweis M. S., Mill M., Yoganathan A., Lucas C. L., 2004, The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset, J. Biomech. Eng., 126(6), 709–713. doi:10.1115/1.1824126

    Article  PubMed  CAS  Google Scholar 

  36. Mitchell M. E., Ittenbach R. F., Gaynor J. W., Wernovsky G., Nicolson S., Spray T. L., 2006, Intermediate outcomes after the Fontan procedure in the current era, J. Thorac. Cardiovasc. Surg., 131(1), 172–180. doi:10.1016/j.jtcvs.2005.08.047

    Article  PubMed  Google Scholar 

  37. Norwood W., Jacobs M. L., 1993, Fontan’s procedure in two stages, Am. J. Surg., 166, 548–551. doi:10.1016/S0002-9610(05)81151-1

    Article  PubMed  CAS  Google Scholar 

  38. Orlando W., Shandas R., DeGroff C., 2006, Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls, Comput. Methods Programs Biomed., 81(3), 220–227. doi:10.1016/j.cmpb.2005.11.010

    Article  PubMed  Google Scholar 

  39. Pekkan K., Frakes D., De Zelicourt D., Lucas C. W., Parks W. J., Yoganathan A. P., 2005, Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model, Asaio J., 51(5), 618–628. doi:10.1097/01.mat.0000176169.73987.0d

    Article  PubMed  Google Scholar 

  40. Pekkan K., Kitajima H., Forbess J., Fogel M., Kanter K., Parks J. M., Sharma S., Yoganathan A. P., 2005, Total cavopulmonary connection flow with functional left pulmonary artery stenosis—fenestration and angioplasty in vitro, Circulation, 112(21), 3264–3271. doi:10.1161/CIRCULATIONAHA.104.530931

    Article  PubMed  Google Scholar 

  41. Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. de Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. P. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamic optimization through free-form haptic anatomy editing tool (SURGEM). Med. Biol. Eng. Comput., 2008, Aug 5. [Epub ahead of print]

  42. Pekkan K., Zelicourt D., Ge L., Sotiropoulos F., Frakes D., Fogel M. A., Yoganathan A. P. 2005, Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study, Ann. Biomed. Eng., 33(3), 284–300. doi:10.1007/s10439-005-1731-0

    Article  PubMed  Google Scholar 

  43. Rossignac J., Pekkan K., Whited B., Kanter K., Sharma S., Yoganathan A., 2006, Surgem: Next Generation CAD Tools for Interactive Patient-specific Surgical Planning and Hemodynamic Analysis, Georgia Institute of Technology, Atlanta

    Google Scholar 

  44. Ryu K., Healy T. M., Ensley A. E., Sharma S., Lucas C., Yoganathan A. P., 2001, Importance of accurate geometry in the study of the total cavopulmonary connection: computational simulations and in vitro experiments, Ann. Biomed. Eng., 29(10), 844–853. doi:10.1114/1.1408930

    Article  PubMed  CAS  Google Scholar 

  45. Soerensen D. D., Pekkan K., Sundareswaran K. S., Yoganathan A. P., 2004, New power loss optimized Fontan connection evaluated by calculation of power loss using high resolution PC-MRI and CFD, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2, 1144–1147

    PubMed  CAS  Google Scholar 

  46. Soerensen D. D., Pekkan K., de Zelicourt D., Sharma S., Kanter K., Fogel M., Yoganathan A. P., 2007, Introduction of a new optimized total cavopulmonary connection, Ann. Thorac. Surg., 83(6), 2182–2190. doi:10.1016/j.athoracsur.2006.12.079

    Article  PubMed  Google Scholar 

  47. Sorensen T. S., Greil G. F., Hansen O. K., Mosegaard J., 2006, Surgical simulation—a new tool to evaluate surgical incisions in congenital heart disease?, Interact. Cardiovasc. Thorac. Surg., 5(5), 536–539. doi:10.1510/icvts.2006.132316

    Article  PubMed  Google Scholar 

  48. Stamm C., Friehs I., Mayer J. E., Zurakowski D., Triedman J. K., Moran A. M., Walsh E. P., Lock J. E., Jonas R. A., del Nido P. J., 2001, Long-term results of the lateral tunnel Fontan operation, J. Thorac. Cardiovasc. Surg., 121(1), 28–41. doi:10.1067/mtc.2001.111422

    Article  PubMed  CAS  Google Scholar 

  49. Sundareswaran, K., M. Fogel, K. Pekkan, H. Kitajima, W. Parks, S. Sharma, and A. Yoganathan. Viscous Dissipation Power Loss of the Total Cavopulmonary Connection Evaluated Using Phase Contrast Magnetic Resonance Imaging. The American Heart Association (AHA) Scientific Sessions, Chicago, 2006

  50. Sundareswaran K. S., Kanter K. R., Kitajima H. D., Krishnankutty R., Sabatier J. F., Parks W. J., Sharma S., Yoganathan A. P., Fogel M., 2006, Impaired power output and cardiac index with hypoplastic left heart syndrome: a magnetic resonance imaging study, Ann. Thorac. Surg., 82(4), 1267–1275; doi:10.1016/j.athoracsur.2006.05.020 discussion 1275–1267

    Article  PubMed  Google Scholar 

  51. Sundareswaran, K. S., K. Pekkan, L. P. Dasi, K. Whitehead, S. Sharma, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. The Total Cavopulmonary Connection Resistance: A Significant Impact on Single Ventricle Hemodynamics at Rest and Exercise. Am. J. Physiol. Heart Circ. Physiol., 2008, Oct 17 [Epub ahead of print] (in press).

  52. Sundareswaran, K., D. de Zelicourt, K. Pekkan, G. Jayaprakash, D. Kim, J. Rossignac, M. Fogel, K. Kanter, and A. Yoganathan. Anatomically realistic patient-specific surgical planning of complex congenital heart defects using MRI and CFD. In: 29th IEEE EMBS Annual International Conference, Cité Internationale, Lyon, France, 2007

  53. Wang, C., K. Pekkan, D. de Zelicourt, M. Hormer, A. Parihar, A. Kulkarni, and A. Yoganathan. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Ann. Biomed. Eng., 2007 (in press)

  54. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116(Supp 11):I165–I171, 2007

    PubMed  Google Scholar 

  55. Whitehead, K. K., K. Pekkan, H. Kitajima, S. Paridon, M. Fogel, and A. P. Yoganathan. Computational Model of Exercise Effects on Fontan Hemodynamics Demonstrates Favorable Energetics in Extracardiac Fontans When Compared to Lateral Tunnel, The American Heart Association (AHA) Scientific Sessions Orange County Convention Center – Orlando, FL, Nov 4–7 2007. (Also published in the Oct 31, 2007, special issue of Circulation: Journal of the American Heart Association)

  56. Zelicourt D., Pekkan K., Kitajima H., Frakes D., Yoganathan A. P., 2005, Single-step stereolithography of complex anatomical models for optical flow measurements, J. Biomech. Eng., 127(1), 204–207. doi:10.1115/1.1835367

    Article  PubMed  Google Scholar 

  57. Zélicourt D., Pekkan K., Parks W. J., Kanter K., Fogel M., Yoganathan A. P., 2006, Flow study of an extra-cardiac connection with persistent left superior vena cava, J. Thorac. Cardiovasc. Surg., 131(4), 785–791. doi:10.1016/j.jtcvs.2005.11.031

    Article  PubMed  Google Scholar 

  58. Zelicourt D., Pekkan K., Wills L., Kanter K. S., Fogel M., Yoganathan A. P. 2005 In vitro flow analysis of a patient specific intra-atrial TCPC, Ann. Thorac. Surg., 79(6), 2094–2102. doi:10.1016/j.athoracsur.2004.12.052

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Heart, Lung, and Blood Institute, HL67622. We also acknowledge Dr. Dave Frakes for providing the ACGI technology and Dr. Hiroumi Kitajima for processing the patient MRI datasets. Experimental and computational studies were made possible by the help of our brilliant undergraduate students: Vasu Yernini, Maria Restrepo, Kiyu Kim, and Quantez Freeman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Appendix

Appendix

Effects of Secondary Morphological Features on Hydrodynamic Power Loss

The effects of secondary and peripheral anatomical features on the computed TCPC power loss values (S3R) have been well established in the earlier verification studies. This communication is an appropriate place to summarize these briefly for the S2R. These factors should influence the computed fluid dynamics of both Glenn and hemi-Fontan models more-or-less in the same magnitude thus should not influence the stated conclusions of this manuscript. The effect of the extra 3D reconstruction smoothing has studied in the Glenn model (CHOA030), Fig. A1. Calculated power loss values are −0.250 mW and −0.277 mW with our standard reconstruction protocol and with the extra surface smoothed model, respectively. The effect of PA branch length and proximal bending is studied in another Glenn model (CHOP057), Fig. A2. As expected the PA bending increased the power loss values from 0.044 mW to 0.045 mW which was negligible for this configuration. For all other models morphology of the PA branches are relatively straight with gentler radii of curvature.

Figure A1
figure 11

Effect of extra smoothing on the pressure distribution (mmHg) for a Glenn model (Database ID: CHOA030). Top: is the 3D reconstruction from the standard methodology (For the coronal view please refer to Fig. 8). Bottom: Over smoothed model, see arrow. No major differences were apparent in the streamline patterns of these two models

Figure A2
figure 12

Effect of distal PA morphology (arrow) on the computed flow fields and pressure drop (mmHg). For the model with a straight PA please refer to Fig. 8. (Database ID: Chop057)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekkan, K., Dasi, L.P., de Zélicourt, D. et al. Hemodynamic Performance of Stage-2 Univentricular Reconstruction: Glenn vs. Hemi-Fontan Templates. Ann Biomed Eng 37, 50–63 (2009). https://doi.org/10.1007/s10439-008-9591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9591-z

Keywords

Navigation