Skip to main content
Log in

Role of Upper Airway Dimensions in Snore Production: Acoustical and Perceptual Findings

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While considerable efforts have been expended to develop snore-driven markers for detecting obstructive sleep apnea (OSA), there is little emphasis on the relationship between the human upper airway (UA) dimensions and the attributes of snores. This paper aims to investigate the acoustical and perceptual impacts of changing the cross-sectional areas (CSA) of the pharynx and oral cavity on the production of snores. Synthetic snores were generated based on the source-filter theory, whereas natural snores were recorded from 40 snorers during nocturnal polysomnography. First formant frequency (F1), spectral peak frequency (PF), and psychoacoustic metrics (loudness, sharpness, roughness, fluctuation strength, and annoyance) of CSA perturbations were examined, completed with diagnostic appraisal of F1 and PF for single- and mixed-gender groupings using the receiver operating characteristic curve analysis. Results show that (1) narrowing the pharyngeal airway consistently increases F1, but not for PF; and (2) altering the airway dimensions yield no considerable differences in perception of snore sounds, but indirectly affect the psychoacoustics by changing the dynamics of snore source flow. Diagnostic outcomes for all groupings (p-value < 0.0001) demonstrate that F1 is more capable of distinguishing apneic and benign snorers than PF due to the close association of F1 with the UA anatomical structures. Correlation exists between the UA anatomy and the properties of snores; there is a promising future for developing snore-driven screening tools for OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Airas, M. TKK Aparat: an environment for voice inverse filtering and parameterization. Logoped. Phoniatr. Vocol. 33(1):49–64, 2008.

    Article  PubMed  Google Scholar 

  2. Akaike, H. Power spectrum estimation through autoregression model fitting. Ann. Inst. Stat. Math. 21:407–419, 1969.

    Article  Google Scholar 

  3. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19:719–723, 1974.

    Google Scholar 

  4. Beck, R., M. Odeh, A. Oliven, and N. Gavriely. The acoustic properties of snores. Eur. Respir. J. 8(12):2120–2128, 1995.

    Article  PubMed  CAS  Google Scholar 

  5. Bertino, G., E. Matti, S. Migliazzi, F. Pagella, C. Tinelli, and M. Benazzo. Acoustic changes in voice after surgery for snoring: preliminary results. Acta Otorhinolaryngol. Ital. 26(2):110–114, 2006.

    PubMed  CAS  Google Scholar 

  6. Bertram, C. D. Flow-induced oscillation of collapsed tubes and airway structures. Respir. Physiol. Neurobiol. 163(1–3):256–265, 2008.

    Article  PubMed  Google Scholar 

  7. Cavusoglu, M., T. Ciloglu, Y. Serinagaoglu, M. Kamasak, O. Erogul, and T. Akcam. Investigation of sequential properties of snoring episodes for obstructive sleep apnoea identification. Physiol. Meas. 29(8):879–898, 2008.

    Article  PubMed  CAS  Google Scholar 

  8. Childers, D. G. Speech Processing and Synthesis Toolboxes. New Yrok: Wiley, 1999

    Google Scholar 

  9. Chouly, F., A. Van Hirtum, P. Y. Lagree, X. Pelorson, and Y. Payan. Modelling the human pharyngeal airway: validation of numerical simulations using in vitro experiments. Med. Biol. Eng. Comput. 47(1):49–58, 2009.

    Article  PubMed  Google Scholar 

  10. Dalmasso, F., and R. Prota. Snoring: analysis, measurement, clinical implications and applications. Eur. Respir. J. 9(1):146–159, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. de Cheveigne, A., and H. Kawahara. YIN, a fundamental frequency estimator for speech and music. JAS 111(4):1917–1930, 2002.

    Google Scholar 

  12. Deller, J. R., J. H. L. Hansen, and J. G. Proakis. Discrete-Time Processing of Speech Signals. NJ: Wiley-IEEE Press, 1999

    Google Scholar 

  13. El-Jaroudi, A., and J. Makhoul. Discrete all-pole modeling. IEEE Trans. Signal Process. 39(2):411–423, 1991.

    Article  Google Scholar 

  14. Fant, G. Acoustic Theory of Speech Production. The Hague: Mouton, 1960

    Google Scholar 

  15. Fastl, H., and E. Zwicker. Psychoacoustics: Facts and Models. New York: Springer, 2007

    Google Scholar 

  16. Gavriely, N., and O. Jensen. Theory and measurements of snores. J. Appl. Physiol. 74(6):2828–2837, 1993.

    PubMed  CAS  Google Scholar 

  17. Hara, H., N. Murakami, Y. Miyauchi, and H. Yamashita. Acoustic analysis of snoring sounds by a multidimensional voice program. Laryngoscope 116(3):379–381, 2006.

    Article  PubMed  Google Scholar 

  18. Ikeda, K., M. Ogura, T. Oshima, H. Suzuki, S. Higano, S. Takahashi, H. Kurosawa, W. Hida, H. Matsuoka, and T. Takasaka. Quantitative assessment of the pharyngeal airway by dynamic magnetic resonance imaging in obstructive sleep apnea syndrome. Ann. Otol. Rhinol. Laryngol. 110(2):183–189, 2001.

    PubMed  CAS  Google Scholar 

  19. Jung, D. G., H. Y. Cho, R. R. Grunstein, and B. Yee. Predictive value of kushida index and acoustic pharyngometry for the evaluation of upper airway in subjects with or without obstructive sleep apnea. J. Korean Med. Sci. 19(5):662–667, 2004.

    Article  PubMed  Google Scholar 

  20. Koutsourelakis, I., E. Vagiakis, C. Roussos, S. Zakynthinos, and C. Roussos. Obstructive sleep apnoea and oral breathing in patients free of nasal obstruction. Eur. Respir. J. 28(6):1222–1228, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. Ladefoged, P. A Course in Phonetics. Belmont, CA: Wadsworth Publishing, 2005

    Google Scholar 

  22. Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice Hall PTR, 1998

    Google Scholar 

  23. Makhoul, J. Linear prediction: a tutorial review. Proc. IEEE 63(4):561–580, 1975.

    Article  Google Scholar 

  24. Markel, J. D., and A. H. Gray. Linear Prediction of Speech. New York: Springer-Verlag, 1976

    Google Scholar 

  25. Michael, H., S. Andreas, B. Thomas, H. Beatrice, H. Werner, and K. Holger. Analysed snoring sounds correlate to obstructive sleep disordered breathing. Eur. Arch. Otorhinolaryngol. 265(1):105–113, 2008.

    Article  Google Scholar 

  26. Mohsenin, V. Effects of gender on upper airway collapsibility and severity of obstructive sleep apnea. Sleep Med. 4(6):523–529, 2003.

    Article  PubMed  Google Scholar 

  27. Ng, A. K., Z. J. Ho, and T. S. Koh. Effects of microphone position on snore signal quality and patient comfort. In: Proceedings of the International Conference on Signal Processing, pp. 2130–2133, 2008.

  28. Ng, A. K. and T. S. Koh. A high-fidelity acquisition system for snore signals: design and implementation. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference, pp. 189–193, 2007, art. no. 4258108.

  29. Ng, A. K. and T. S. Koh. Using psychoacoustics of snoring sounds to screen for obstructive sleep apnea. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 1647–1650, 2008.

  30. Ng, A. K., T. S. Koh, E. Baey, T. H. Lee, U. R. Abeyratne, and K. Puvanendran. Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea? Sleep Med. 9(8):894–898, 2008.

    Article  PubMed  Google Scholar 

  31. Ng, A. K., T. S. Koh, K. Puvanendran, and U. R. Abeyratne. Snore signal enhancement and activity detection via translation-invariant wavelet transform. IEEE Trans. Biomed. Eng. 55(10):2332–2342, 2008.

    Article  PubMed  Google Scholar 

  32. Ng, A. K., K. Y. Wong, C. H. Tan, and T. S. Koh. Bispectral analysis of snore signals for obstructive sleep apnea detection. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6196–6199, 2007.

  33. Ogawa, T., R. Enciso, W. H. Shintaku, and G. T. Clark. Evaluation of cross-section airway configuration of obstructive sleep apnea. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 103(1):102–108, 2007.

    Article  PubMed  Google Scholar 

  34. Owens, F. J. Signal Processing of Speech. London: Macmillan, 1993

    Google Scholar 

  35. Park, S., C. Kim, and I. Jung. Metric study of upper airway and trachea in normal Korean adults using fiberoptic bronchoscopy: study of endotracheal tube fixation positioning in adults. Korean J. Anesthesiol. 31(6):733–738, 1996.

    Google Scholar 

  36. Rechtschaffen, A. and A. Kales. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Los Angeles: Brain Information Service/Brain Research Institutes, University of California, 1968.

  37. Rissanen, J. A universal prior for integers and estimation by minimum description length. Ann. Stat. 11(2):416–431, 1983.

    Article  Google Scholar 

  38. Stoica, P., and R. L. Moses. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice Hall, 2005

    Google Scholar 

  39. Stuck, B. A., and J. T. Maurer. Airway evaluation in obstructive sleep apnea. Sleep Med. Rev. 12(6):411–436, 2008.

    Article  PubMed  Google Scholar 

  40. Sun, X., C. Yu, Y. Wang, and Y. Liu. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method. Acta Mechanica Sinica/Lixue Xuebao 23(4):359–367, 2007.

    Article  Google Scholar 

  41. Zhang, Z., and C. Y. Espy-Wilson. A vocal-tract model of American English /l/. JAS 115(3):1274–1280, 2004.

    Google Scholar 

  42. Zweig, M. H., and G. Campbell. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39(4):561–577, 1993.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the group of polysomnographic technicians and signal processing specialists for their involvement and support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Keong Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, A.K., Koh, T.S., Baey, E. et al. Role of Upper Airway Dimensions in Snore Production: Acoustical and Perceptual Findings. Ann Biomed Eng 37, 1807–1817 (2009). https://doi.org/10.1007/s10439-009-9745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9745-7

Keywords

Navigation