Skip to main content
Log in

The Effects of Concentric Ring Electrode Electrical Stimulation on Rat Skin

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Surface electrodes are commonly used electrodes clinically, in applications such as functional electrical stimulation for the restoration of motor functions, pain relief, transcutaneous electrical nerve stimulation, electrocardiographic monitoring, defibrillation, surface cardiac pacing, and advanced drug delivery systems. Common to these applications are occasional reports of pain, tissue damage, rash, or burns on the skin at the point where electrodes are placed. In this study, we quantitatively analyzed the effects of acute noninvasive electrical stimulation from concentric ring electrodes (CRE) to determine the maximum safe current limit. We developed a three-dimensional multi-layer model and calculated the temperature profile under the CRE and the corresponding energy density with electrical-thermal coupled field analysis. Infrared thermography was used to measure skin temperature during electrical stimulation to verify the computer simulations. We also performed histological analysis to study cell morphology and characterize any resulting tissue damage. The simulation results are accurate for low energy density distributions. It can also be concluded that as long as the specified energy density applied is kept below 0.92 (A2/cm4·s−1), the maximum temperature will remain within the safe limits. Future work should focus on the effects of the electrode paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ambler, J. J., D. M. Sado, D. A. Zideman, and C. D. Deakin. The incidence and severity of cutaneous burns following external DC cardioversion. Resuscitation 61:281–288, 2004.

    Article  PubMed  Google Scholar 

  2. Auletta, C. Current in vivo assays for cutaneous toxicity: local and systemic toxicity testing. Basic Clin. Pharmacol. Toxicol. 95:201–208, 2004.

    Article  CAS  PubMed  Google Scholar 

  3. Balmaseda, Jr., M. T., M. T. Fatehi, S. H. Koozekanani, and J. S. Sheppard. Burns in functional electric stimulation: two case reports. Arch. Phys. Med. Rehabil. 68:452–453, 1987.

    PubMed  Google Scholar 

  4. Besio, W., H. Cao, and P. Zhou. Application of tripolar concentric electrodes and pre-feature selection algorithm for brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2):191–194, 2008.

    Article  PubMed  Google Scholar 

  5. Besio, W., K. Koka, R. Aakula, and W. Dai. Tri-polar concentric electrode development for high resolution EEG Laplacian electroencephalography using tri-polar concentric ring electrodes. IEEE Trans. BME 53(5):926–933, 2006.

    Article  Google Scholar 

  6. Besio, W., K. Koka, and A. Cole. Effects of noninvasive transcutaneous electrical stimulation via concentric ring electrodes on pilocarpine-induced status epilepticus in rats. Epilepsia 48(12):2273–2279, 2007.

    PubMed  Google Scholar 

  7. Cowan, S., J. McKenna, E. McCrum-Gardner, M. Johnson, K. Sluka, and D. Walsh. An investigation of the hypoalgesic effects of TENS delivered by a glove electrode. J. Pain 10:694–701, 2009.

    Article  PubMed  Google Scholar 

  8. Danielsen, L., M. Gniadecka, H. K. Thomsen, F. Pedersen, S. Strange, K. G. Nielsen, and H. D. Petersen. Skin changes following defibrillation. The effect of high voltage direct current. Forensic Sci. Int. 134:134–141, 2003.

    Article  PubMed  Google Scholar 

  9. Davey, K., C. Epstein, M. George, and D. Bohning. Measuring the effects of electrical conductivity of the head on the induced electric field in the brain during magnetic stimulation. Clin. Neurophys. 114(11):2204–2209, 2003.

    Article  Google Scholar 

  10. Fregni, F., S. Thome-Souza, M. Nitsche, S. Freedman, K. Valente, and A. Pascual-Leone. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia 47:335–342, 2006.

    Article  PubMed  Google Scholar 

  11. Grossi, E. A., M. A. Parish, M. R. Kralik, L. R. Glassman, R. A. Esposito, G. H. Ribakove, A. C. Galloway, and S. B. Colvin. Direct-current injury from external pacemaker results in tissue electrolysis. Ann. Thorac. Surg. 56:156–157, 1993.

    Article  CAS  PubMed  Google Scholar 

  12. Kerber, R., R. Kieso, M. Kienzle, B. Olshansky, A. Waldo, M. Carlson, D. Wilber, A. Aschoff, S. Birger, and F. Charbonnier. Current-based transthoracic defibrillation. Am. J. Cardiol. 78:1113–1118, 1996.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, Y., and P. H. Schimpf. Electrical behavior of defibrillation and pacing electrodes. Proc. IEEE 84:446–456, 1996.

    Article  Google Scholar 

  14. Kim, Y., J. G. Webster, and W. J. Tompkins. Simulated and experimental studies of temperature elevation around electrosurgical dispersive electrodes. IEEE Trans. Biomed. Eng. 31:681–692, 1984.

    Article  CAS  PubMed  Google Scholar 

  15. Koka, K., and W. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165:216–222, 2007.

    Article  PubMed  Google Scholar 

  16. Kowalski, T., J. Silny, and H. Buchner. Current density threshold for the stimulation of neurons in the motor cortex area. Bioelectromagnetics 23(6):421–428, 2002.

    Article  CAS  PubMed  Google Scholar 

  17. Krasteva, V. T., and S. P. Papazov. Estimation of current density distribution under electrodes for external defibrillation. Biomed. Eng. Online 16:1–7, 2002.

    Google Scholar 

  18. Lambert, H., E. De Baetselier, G. Vanalme, and G. D. Mey. Skin burn risk using transcutaneous direct current. Proceedings of IEEE Engineering in Medicine and Biology 17th Annual Conference, 1995, pp. 477–478.

  19. Lippmann, M., and W. A. Fields. Burns of the skin caused by a peripheral-nerve stimulator. Anesthesiology 40:82–84, 1974.

    Article  CAS  PubMed  Google Scholar 

  20. Merrill, D., M. Bikson, and J. Jefferys. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141:171–198, 2005.

    Article  PubMed  Google Scholar 

  21. Miranda, P. C., M. Lomarev, and M. Hallett. Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117(7):1623–1629, 2006.

    Article  PubMed  Google Scholar 

  22. Moritz, R., and F. C. Henriques. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of skin burns. Am. J. Pathol. 23:695–720, 1947.

    PubMed  CAS  Google Scholar 

  23. Oosterom, A. V., and J. Strackee. Computing the lead field of electrodes with axial symmetry. Med. Biol. Eng. Comput. 21:473–481, 1983.

    Article  PubMed  Google Scholar 

  24. Overmeyer, K. M., J. A. Pearce, and D. P. DeWitt. Measurements of temperature distributions at electrosurgical dispersive electrode sites. J. Biomech. Eng. 101:66–72, 1979.

    Google Scholar 

  25. Pacelat, E., R. Magjarevic, and V. Isgum. Measurement of electrode-tissue interface characteristics during high current transcranial pulse electrical stimulation. Measurement 27:133–143, 2000.

    Article  Google Scholar 

  26. Papazov, S., Z. Kostov, and I. Daskalov. Electrical current distribution under transthoracic defibrillation and pacing electrodes. J. Med. Eng. Technol. 26:22–27, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. Patriciu, A., K. Yoshida, J. J. Struijk, T. P. DeMonte, M. L. Joy, and H. Stodkilde-Jorgensen. Current density imaging and electrically induced skin burns under surface electrodes. IEEE Trans. Biomed. Eng. 52:2024–2031, 2005.

    Article  PubMed  Google Scholar 

  28. Pearce, J. A., L. A. Geddes, J. F. Van Vleet, K. Foster, and J. Allen. Skin burns from electrosurgical current. Med. Instrum. 17:225–231, 1983.

    CAS  PubMed  Google Scholar 

  29. Sackeim, H. Convulsant and anticonvulsant properties of ECT towards a focal form of brain stimulation. Clin. Neurosci. Res. 4:39–57, 2004.

    Article  Google Scholar 

  30. Shah, R. N., and J. G. Webster. Burns under electrosurgical dispersive electrodes. Proceedings of the 14th Annual Meeting AAMI, Vol. 20, Las Vagas, NV, 1979, p. 292.

  31. Stoner, D. L., J. H. Yoo, R. W. Feldtman, and W. Stanford. Human skin burns induced by defibrillator default current. J. Thorac. Cardiovasc. Surg. 72:157–161, 1976.

    CAS  PubMed  Google Scholar 

  32. Takamiya, M., K. Saigusa, N. Nakayashiki, and Y. Aoki. A histological study on the mechanism of epidermal nuclear elongation in electrical and burn injuries. Int. J. Legal Med. 115:152–157, 2001.

    Article  CAS  PubMed  Google Scholar 

  33. Vedovato, J. W., V. P. Polvora, and D. F. Leonardi. Burns as a complication of the use of diathermy. J. Burn Care Rehabil. 25:120–123, 2004.

    Article  CAS  PubMed  Google Scholar 

  34. Wiley, J. D., and J. G. Webster. Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans. Biomed. Eng. 29:381–385, 1982.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Green Family Chiropractic of Farmerville Louisiana for the use of there infrared thermography system and Dr. Mesut Sahin for rat experimental training and use of his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Besio.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besio, W., Sharma, V. & Spaulding, J. The Effects of Concentric Ring Electrode Electrical Stimulation on Rat Skin. Ann Biomed Eng 38, 1111–1118 (2010). https://doi.org/10.1007/s10439-009-9891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9891-y

Keywords

Navigation