Skip to main content
Log in

A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An abdominal aortic aneurysm (AAA) is a balloon-like dilation of the aorta, which is potentially fatal in case of rupture. Computational finite element (FE) analysis is a promising approach to a more accurate and patient-specific rupture risk prediction. AAA wall strength and rupture potential index (RPI) calculation are implemented in our FE software. Static structural FE simulations are performed on n = 30 non-ruptured asymptomatic, n = 9 non-ruptured symptomatic, and n = 14 ruptured AAAs. We calculate maximum values for diameter, wall displacement, strain, stress, and RPI as well as minimum wall strength for every AAA. All investigated quantities, except minimum strength, show statistically significant differences between non-ruptured asymptomatic and symptomatic/ruptured AAAs. Maximum wall stress and especially the RPI are notably increased for symptomatic and ruptured AAAs. The biggest difference is found to be the RPI (Δ = 44.9%, p = 8.0e−5). Lowest RPI obtained for symptomatic or ruptured AAAs is 0.3. The RPI of more than 55% of the investigated asymptomatic AAAs falls below this value. Maximum wall stress and maximum RPI criteria enable a reliable rupture risk evaluation for AAAs. Especially in the diameter range where surgical indication is not obvious, the RPI holds great potential for improvement of clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Ashton, J. H., J. P. Vande Geest, B. R. Simon, and D. G. Haskett. Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J. Biomech. 42(3):197–201, 2009.

    Article  PubMed  Google Scholar 

  2. Cosford, P. A., and G. C. Leng. Screening for abdominal aortic aneurysm. Cochrane Database of Systematic Reviews: Reviews 2007(2), 2007.

  3. Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. Circulation 54:161–164, 1977.

    Google Scholar 

  4. Di Martino, E., S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa, and R. Fumero. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: Experimental characterisation and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15(4):290–299, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Doyle, B. J., A. Callanan, P. E. Burke, P. A. Grace, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J. Vasc. Surg. 49(2):443–454, 2009.

    Article  PubMed  Google Scholar 

  6. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4):724–732, 2003.

    Article  PubMed  Google Scholar 

  7. Gasser, T. C., M. Auer, F. Labruto, J. Roy, and J. Swedenborg. Using finite element analysis to assess rupture risk in abdominal aortic aneurysms including the effect of the intraluminal thrombus. J. Vasc. Surg. 49(5):S29, 2009.

    Article  Google Scholar 

  8. Gasser, T. C., G. Görgülü, M. Folkesson, and J. Swedenborg. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48(1):179–188, 2008.

    Article  PubMed  Google Scholar 

  9. Gee, M. W., C. Förster, and W. A. Wall. A computational strategy for prestressing patient specific biomechanical problems under finite deformation. Int. J. Numer. Methods Biomed. Eng. 26(1):52–72, 2010.

    Article  Google Scholar 

  10. Gee, M. W., U. Küttler, and W. A. Wall. Truly monolithic algebraic multigrid for fluid-structure interaction. Int. J. Numer. Methods Biomed. Eng. 2009 (submitted).

  11. Gee, M. W., C. Reeps, H.-H. Eckstein, and W. A. Wall. Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42(11):1732–1739, 2009.

    Article  CAS  PubMed  Google Scholar 

  12. Greenhalgh, R. M. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (evar trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364(9437):843–848, 2004.

    Article  CAS  PubMed  Google Scholar 

  13. Heider, P., O. Wolf, C. Reeps, M. Hanke, A. Zimmermann, H. Berger, and H.-H. Eckstein. Aneurysmen und Dissektionen der thorakalen und abdominellen Aorta. Der Chirurg 78(7):600–610, 2007.

    Article  CAS  Google Scholar 

  14. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10(1):221–246, 2008.

    Article  CAS  PubMed  Google Scholar 

  15. Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, and J. Swedenborg. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38(6):1283–1292, 2003.

    Article  PubMed  Google Scholar 

  16. Leung, J., A. Wright, N. Cheshire, J. Crane, S. Thom, A. Hughes, and Y. Xu. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. BioMed. Eng. OnLine 5(1):33, 2006.

    Article  PubMed  Google Scholar 

  17. Li, Z.-Y., J. U-King-Im, T. Y. Tang, E. Soh, T. C. See, and J. H. Gillard. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J. Vasc. Surg. 47(5):928–935, 2008.

    Article  PubMed  Google Scholar 

  18. Lu, J., X. Zhou, and M. Raghavan. Inverse method of stress analysis for cerebral aneurysms. J. Biomech. Model. Mechanobiol. 7:477–486, 2008.

    Article  Google Scholar 

  19. Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3):693–696, 2007.

    Article  PubMed  Google Scholar 

  20. Maier, A., M. W. Gee, C. Reeps, H.-H. Eckstein, and W. A. Wall. Impact of model complexity on patient specific wall stress analyses of abdominal aortic aneurysms. In: IFMBE Proceedings of World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany, vol. 25/IV, edited by O. Dössel, and W. C. Schlegel. Springer, 2009, pp. 510–513.

  21. Maier, A., M. W. Gee, C. Reeps, H.-H. Eckstein, and W. A. Wall. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech. Model. Mechanobiol. doi:10.1007/s10237-010-0191-0, 2010 (accepted).

  22. Müller, M. Chirurgie für Studium un Praxis, chapter Gefäßchirurgie - arterielle Aneurysmen. Breisach: Medizinische Verlags- und Informationsdienste, 2004/05, pp. 58–61.

  23. Ockert, S., D. Boeckler, J. Allenberg, and H. Schumacher. Rupturiertes abdominelles Aortenaneurysma. Gefaesschirurgie 12(5):379–391, 2007.

    Article  Google Scholar 

  24. R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2008.

  25. Raghavan, M. L., J. Kratzberg, E. M. Castro de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39(16):3010–3016, 2006.

    Article  PubMed  Google Scholar 

  26. Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4):475–482, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model. Ann. Biomed. Eng. 24(5):573–582, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Reeps, C., M. Gee, A. Maier, M. Gurdan, H.-H. Eckstein, and W. A. Wall. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J. Vasc. Surg. 51(3):679–688, 2010.

    Article  PubMed  Google Scholar 

  29. Reeps, C., M. W. Gee, A. Maier, J. Pelisek, M. Gurdan, W. A. Wall, J. Mariss, H.-H. Eckstein, and M. Essler. Glucose metabolism in the vessel wall correlates with mechanical instability and inflammatory changes in a patient with a growing aneurysm of the abdominal aorta. Circ. Cardiovasc. Imaging 2(6):507–509, 2009.

    Article  PubMed  Google Scholar 

  30. Reeps, C., A. Maier, M. Gee, M. Baust, A. Zimmermann, S. Ockert, J. Pongratz, N. Navab, W. Wall, H.-H. Eckstein, and M. Essler. Correlation of biomechanics to tissue reaction in aortic aneurysm assessed by finite elements and 18F-fluorodeoxyglucose–pet/ct. Biomech. Model. Mechanobiol. 2010 (submitted).

  31. Rodriguez, J. F., C. Ruiz, M. Doblare, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130(2):021023-1–021023-10, 2008.

    Article  Google Scholar 

  32. Sakalihasan, N., and J. B. Michel. Functional imaging of atherosclerosis to advance vascular biology. Eur. J. Vasc. Endovasc. Surg. 37(6):728–734, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Speelman, L., A. Bohra, E. M. H. Bosboom, G. W. H. Schurink, F. N. van de Vosse, M. S. Makaroun, and D. A. Vorp. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J. Biomech. Eng. 129(1):105–109, 2007.

    Article  PubMed  Google Scholar 

  34. Speelman, L., E. Bosboom, G. Schurink, J. Buth, M. Breeuwer, M. Jacobs, and F. van de Vosse. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J. Biomech. 42(11):1713–1719, 2009.

    Article  CAS  PubMed  Google Scholar 

  35. Speelman, L., E. M. H. Bosboom, G. W. H. Schurink, F. A. M. V. I. Hellenthal, J. Buth, M. Breeuwer, M. J. Jacobs, and F. N. van de Vosse. Patient-specific aaa wall stress analysis: 99-percentile versus peak stress. Eur. J. Vasc. Endovasc. Surg. 36(6):668–676, 2008.

    Article  CAS  PubMed  Google Scholar 

  36. Truijers, M., J. A. Pol, L. J. SchultzeKool, S. M. van Sterkenburg, M. F. Fillinger, and J. D. Blankensteijn. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33(4):401–407, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Vande Geest, J., E. Di Martino, A. Bohra, M. Makaroun, and D. Vorp. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment. Ann. N. Y. Acad. Sci. 1085:11–21, 2006.

    Article  PubMed  Google Scholar 

  38. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39(7):1324–1334, 2006.

    Article  PubMed  Google Scholar 

  39. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39(13):2347–2354, 2006.

    Article  PubMed  Google Scholar 

  40. Vande Geest, J. P., D. Schmidt, M. Sacks, and D. A. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. of Biomed. Eng. 36(6):921–932, 2008.

    Article  PubMed  Google Scholar 

  41. Vande Geest, J. P., D. H. J. Wang, S. Wisniewski, M. Makaroun, and D. Vorp. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34(7):1098–1106, 2006.

    Article  PubMed  Google Scholar 

  42. Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40(9):1887–1902, 2007.

    Article  PubMed  Google Scholar 

  43. Vorp, D. A., P. C. Lee, D. H. J. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, and M. W. Webster. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34(2):291–299, 2001.

    Article  CAS  PubMed  Google Scholar 

  44. Vorp, D. A., S. Shah, and M. S. Makaroun. Changes of biomechanics–based indices for patient–specific abdominal aortic aneurysms over time. In: Proceedings of the ASME 2009 Summer Bioengineering Conference. 2009.

  45. Wall, W. A., and M. W. Gee. Baci: a parallel multiphysics finite element environment. Technical report, Institute for Computational Mechanics, Technische Universität München, 2010.

  46. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36(3):598–604, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support through the International Graduate School of Science and Engineering (IGSSE) of the Technische Universität München, Germany under projects 2–11 and 3–07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Gee.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, A., Gee, M.W., Reeps, C. et al. A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction. Ann Biomed Eng 38, 3124–3134 (2010). https://doi.org/10.1007/s10439-010-0067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0067-6

Keywords

Navigation