Skip to main content

Advertisement

Log in

Respiratory Rate Extraction Via an Autoregressive Model Using the Optimal Parameter Search Criterion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present an autoregressive model-based method which enables accurate respiratory rate extraction from pulse oximeter recordings over a wide range: 12–48 breaths/min. The method uses the optimal parameter search (OPS) technique to estimate accurate AR parameters which are then factorized into multiple pole terms. The pole with the highest magnitude is shown to correspond to the respiratory rate. The performance of the proposed method to extract respiratory rate is compared to the widely used Burg algorithm using both simulation examples and pulse oximeter recordings. In a previous study, we demonstrated several nonparametric time–frequency approaches that were more accurate than Burg’s algorithm when the data length was 1 min [Chon, K. H., S. Dash, and K. Ju. IEEE Trans. Biomed. Eng. 56(8):2054–2063, 2009]. One of the key advantages of the AR method is that a shorter data length can be used. Thus, in this study, we reduced the data length to 30 s and applied our OPS algorithm to examine if accurate respiratory rates can be extracted directly from pulse oximeter recordings. It was found that our proposed method’s accuracy was consistently better with smaller variance than Burg’s method. In particular, our proposed method’s accuracy was significantly greater when respiratory rates were lower than 24 breaths/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

References

  1. Ables, J. G. Maximum entropy spectral analysis. Astron. Astrophys. Suppl. 15(1):383–393, 1974.

    Google Scholar 

  2. Burg, J. P. Maximum entropy spectral analysis. In: Proc. 37th Annu. Int. SEG Meet. Oklahoma City, 1967

  3. Chon, K. H., S. Dash, and K. Ju. Estimation of respiratory rate from photoplethysmogram data using time–frequency spectral estimation. IEEE Trans. Biomed. Eng. 56(8):2054–2063, 2009.

    Article  PubMed  Google Scholar 

  4. Faes, L., G. Nollo, and K. H. Chon. Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann. Biomed. Eng. 36(3):381–395, 2008.

    Article  PubMed  Google Scholar 

  5. Fleming, S. G. A Comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram. Int. J. Biomed. Sci. 2(1):232–236, 2007.

    Google Scholar 

  6. Lu, S., K. H. Ju, and K. H. Chon. A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry. IEEE Trans. Biomed. Eng. 48(10):1116–1124, 2001.

    Article  CAS  PubMed  Google Scholar 

  7. Marple, J. S. L. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

    Google Scholar 

  8. Shelley, K. H., A. A. Awad, R. G. Stout, and D. G. Silverman. The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform. J. Clin. Monit. Comput. 20(2):81–87, 2006.

    Article  PubMed  Google Scholar 

  9. Trainin, N., M. Burger, and A. M. Kaye. Some characteristics of a thymic humoral factor determined by assay in vivo of DNA synthesis in lymph nodes of thymectomized mice. Biochem. Pharmacol. 16(4):711–720, 1967.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H., S. Lu, K. Ju, and K. H. Chon. A new approach to closed-loop linear system identification via a vector autoregressive model. Ann. Biomed. Eng. 30(9):1204–1214, 2002.

    Article  PubMed  Google Scholar 

  11. Wang, H., K. Siu, K. Ju, and K. H. Chon. A high resolution approach to estimating time–frequency spectra and their amplitudes. Ann. Biomed. Eng. 34(2):326–338, 2006.

    Article  PubMed  Google Scholar 

  12. Xiao, X., Y. Li, and R. Mukkamala. A model order selection criterion with applications to cardio-respiratory-renal systems. IEEE Trans. Biomed. Eng. 52(3):445–453, 2005.

    Article  PubMed  Google Scholar 

  13. Zou, R., and K. H. Chon. Robust algorithm for estimation of time-varying transfer functions. IEEE Trans. Biomed. Eng. 51(2):219–228, 2004.

    Article  PubMed  Google Scholar 

  14. Zou, R., H. Wang, and K. H. Chon. A robust time-varying identification algorithm using basis functions. Ann. Biomed. Eng. 31(7):840–853, 2003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lee.

Additional information

Associate Editor Leonidas D. Iasemidis oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Chon, K.H. Respiratory Rate Extraction Via an Autoregressive Model Using the Optimal Parameter Search Criterion. Ann Biomed Eng 38, 3218–3225 (2010). https://doi.org/10.1007/s10439-010-0080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0080-9

Keywords

Navigation