Skip to main content

Advertisement

Log in

A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patient-specific abdominal aortic aneurysms (AAAs) are characterized by local curvature changes, which we assess using a feature-based approach on topologies representative of the AAA outer wall surface. The application of image segmentation methods yields 3D reconstructed surface polygons that contain low-quality elements, unrealistic sharp corners, and surface irregularities. To optimize the quality of the surface topology, an iterative algorithm was developed to perform interpolation of the AAA geometry, topology refinement, and smoothing. Triangular surface topologies are generated based on a Delaunay triangulation algorithm, which is adapted for AAA segmented masks. The boundary of the AAA wall is represented using a signed distance function prior to triangulation. The irregularities on the surface are minimized by an interpolation scheme and the initial coarse triangulation is refined by forcing nodes into equilibrium positions. A surface smoothing algorithm based on a low-pass filter is applied to remove sharp corners. The optimal number of iterations needed for polygon refinement and smoothing is determined by imposing a minimum average element quality index with no significant AAA sac volume change. This framework automatically generates high-quality triangular surface topologies that can be used to characterize local curvature changes of the AAA wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4

Similar content being viewed by others

References

  1. Ateshian, G. A., M. P. Rosenwasser, and V. C. Mow. Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. J. Biomech. 6:591–607, 1992.

    Article  Google Scholar 

  2. Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.

    Article  PubMed  Google Scholar 

  3. Dobrin, P., W. Baker, and W. Gley. Elastolytic and collagenolytic studies of arteries. Arch. Surg. 119:405–409, 1984.

    CAS  PubMed  Google Scholar 

  4. Fillinger, M. F., J. Racusin, R. K. Baker, J. L. Cronenwett, A. Teutelink, M. L. Schermerhorn, et al. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J. Vasc. Surg. 39:1243–1252, 2004.

    Article  PubMed  Google Scholar 

  5. Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36:589–597, 2002.

    Article  PubMed  Google Scholar 

  6. Giannakoulas, G., G. Giannoglou, J. V. Soulis, G. Louridas, and G. Parharidis. Rupture of abdominal aortic aneurysms. What matters most: geometry or blood pressure? Eur. J. Vasc. Endovasc. Surg. 34:122–123, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Giannoglou, G., G. Giannakoulas, J. Soulis, Y. Chatzizisis, T. Perdikides, N. Melas, et al. Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology 57:487–494, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–273, 2004.

    Article  PubMed  Google Scholar 

  9. Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131:061015, 2009.

    Article  PubMed  Google Scholar 

  10. Mower, W., L. Baraff, and J. Sneyd. Stress distribution in vascular aneurysms: factors affecting risk of aneurysm rupture. J. Surg. Res. 55:155–161, 1993.

    Article  CAS  PubMed  Google Scholar 

  11. Nyilas, R. D., S. M. L Ng, J. Leung, and X. Y. Xu. Towards a new geometric approach to assess the risk of rupture of abdominal aortic aneurysms using patient specific modeling. In: 2005 Summer Bioengineering Conference, June 22–26, Vail Cascade Resort & Spa, Vail, CL.

  12. Pappu, S., A. Dardik, H. Tagare, and R. J. Gusberg. Beyond fusiform and saccular: a novel quantitative tortuosity index may help classify aneurysm shape and predict aneurysm rupture potential. Ann. Vasc. Surg. 22:88–97, 2008.

    Article  PubMed  Google Scholar 

  13. Persson, P. O., and G. Strang. A simple mesh generator in MATLAB. SIAM Rev. Soc. Ind. Appl. Math. 46:329–345, 2004.

    Google Scholar 

  14. Raghavan, M. L., J. Kratzberg, E. M. Castro de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.

    Article  PubMed  Google Scholar 

  15. Raghavan, M. L., B. Ma, and R. E. Harbaugh. Quantified aneurysm shape and rupture risk. J. Neurosurg. 102:355–362, 2005.

    Article  PubMed  Google Scholar 

  16. Sacks, M. S., C. J. Chuong, G. H. Templeton, and R. Peshock. In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann. Biomed. Eng. 21:263–275, 1993.

    Article  CAS  PubMed  Google Scholar 

  17. Sacks, M. S., D. A. Vorp, M. L. Raghavan, M. P. Federle, and M. W. Webster. In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann. Biomed. Eng. 27:469–479, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Shum, J., E. S. DiMartino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, et al. Semi-automatic vessel wall detection and quantification of wall thickness in CT images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.

    Article  PubMed  Google Scholar 

  19. Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage. J. Heart Valve Dis 8(1):25–33, 1999.

    CAS  PubMed  Google Scholar 

  20. Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28:598–611, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Taubin, G. Signal processing approach to fair surface design. In: Proceedings of the 22nd Annual ACM Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, August 9–11. New York: ACM, 1995.

  22. Upchurch, Jr., G. R., and T. A. Schaub. Abdominal aortic aneurysm. Am. Fam. Physician 73:1198–11204, 2006.

    PubMed  Google Scholar 

  23. Van Damme, H., N. Sakalihasan, and R. Limet. Factors promoting rupture of abdominal aortic aneurysms. Acta Chir. Belg. 105:1–11, 2005.

    PubMed  Google Scholar 

  24. Van de Geest, J. P., D. H. Wang, S. R. Wisniewski, M. S. Makaroun, and D. A. Vorp. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34:1908–1916, 2006.

    Article  Google Scholar 

  25. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.

    CAS  PubMed  Google Scholar 

  26. Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.

    Article  PubMed  Google Scholar 

  27. Vorp, D. A., M. L. Raghavan, and M. W. Webster. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J. Vasc. Surg. 27:632–639, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge research funding from the Bill and Melinda Gates Foundation, the John and Claire Bertucci Graduate Fellowship, Carnegie Mellon University’s Biomedical Engineering Department, and NIH Grants R21EB007651 and R21EB008804, from the National Institute of Biomedical Imaging and Bioengineering, and R15HL087268, from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The contribution of Mr. Kyle Andrews in generating models for the code validation is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender A. Finol.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Appendix

Appendix

3-D shape indices.

Nomenclature

Name

Equation

IPR

Isoperimetric ratio

\( {\text{IPR}} = {\frac{S}{{V^{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 3}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$3$}}}} }}} \)

NFI

Non-fusiform index

\( NFI = {\frac{{{\frac{S}{{V^{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 3}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$3$}}}} }}}}}{{{\frac{{S_{fusiform} }}{{V_{fusiform}^{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 3}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$3$}}}} }}}}}} = {\frac{IPR}{{IPR_{fusiform} }}} \)

Second-order curvature-based indices (calculation described in detail in Martufi et al. 9)

Nomenclature

Name

Equation

GAA

Area averaged Gaussian curvature

\( GAA = {\frac{{\sum_{all\;elements} {K_{j} } S_{j} }}{{\sum_{all\;elements} {S_{j} } }}} \)

MAA

Area averaged Mean curvature

\( MAA = {\frac{{\sum_{all\;elements} {M_{j} } S_{j} }}{{{{\sum_{all\;elements} {S_{j} } }} }}} \)

GLN

L2 norm of the Gaussian curvature

\( GLN = {\frac{1}{4\pi }}\sqrt {\sum_{all\;elements} {S_{j} } \cdot \sum_{all\;elements} {\left( {K_{j}^{2} S_{j} } \right)} } \)

MLN

L2 norm of the Mean curvature

\( MLN = {\frac{1}{4\pi }}\sqrt {\sum_{all\;elements} {\left( {M_{j}^{2} S_{j} } \right)} } \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shum, J., Xu, A., Chatnuntawech, I. et al. A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models. Ann Biomed Eng 39, 249–259 (2011). https://doi.org/10.1007/s10439-010-0165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0165-5

Keywords

Navigation