Skip to main content
Log in

RETRACTED ARTICLE: Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

This article was retracted on 12 January 2013

Abstract

Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p < 0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p < 0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-l-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Berk, L. B. Radiation therapy as primary and adjuvant treatment for local and regional melanoma. Cancer Control 15(3):233–238, 2008.

    PubMed  Google Scholar 

  2. Colt, H. G., and S. W. Crawford. In vitro study of the safety limits of bronchoscopic argon plasma coagulation in the presence of airway stents. Respirology 11(5):643–647, 2006.

    Article  PubMed  Google Scholar 

  3. Coulombe, S. Live cell permeabilization using the APGD-t. In: 1st International Conference on Plasma Medicine (ICPM), Corpus Christi, TX, 2007.

  4. Coulombe, S., et al. Miniature atmospheric pressure glow discharge torch (APGD-t) for local biomedical applications. Pure Appl. Chem. 78(6):1137–1146, 2006.

    Article  Google Scholar 

  5. Eliasson, B., W. Egli, and U. Kogelschatz. Modelling of dielectric barrier discharge chemistry. Pure Appl. Chem. 66(6):1275–1286, 1994.

    Article  Google Scholar 

  6. Eton, O. Chemotherapy, cytokines, and biochemotherapy for melanoma. Cancer Chemother. Biol. Response Modif. 22:739–748, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Fiers, W., et al. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18(54):7719–7730, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Flaherty, K. T. Chemotherapy and targeted therapy combinations in advanced melanoma. Clin. Cancer Res. 12(Pt 2):2366–2370, 2006.

    Article  Google Scholar 

  9. Fridman, A. Plasma biology and plasma medicine. In: Plasma Chemistry. New York, NY: Cambridge University Press, 2008, pp. 848–857.

  10. Fridman, A. Plasma Chemistry. New York, NY: Cambridge University Press, 2008.

    Book  Google Scholar 

  11. Fridman, A. Plasma Biology and Plasma Medicine. New York: Cambridge University Press, 2008.

    Google Scholar 

  12. Fridman, A., A. Chirokov, and A. Gutsol. Non-thermal atmospheric pressure discharges. J. Phys. D: Appl. Phys. 38:R1–R24, 2005.

    Article  CAS  Google Scholar 

  13. Fridman, A. and L. A. Kennedy. Plasma Physics and Engineering. New York: Routledge, 2004, 853 pp.

  14. Fridman, G., et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier. Disch. Air Plasma Chem. Plasma Process. 26(4):425–442, 2006.

    Article  CAS  Google Scholar 

  15. Fridman, G., et al. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process. Polym. 4(4):370–375, 2007.

    Article  CAS  Google Scholar 

  16. Gebicki, S., and J. M. Gebicki. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem. J. 289(Pt 3):743–749, 1993.

    PubMed  CAS  Google Scholar 

  17. Ginsberg, G. G., et al. The argon plasma coagulator: February 2002. Gastrointest. Endosc. 55(7):807–810, 2002.

    Article  PubMed  Google Scholar 

  18. Goree, J., L. Bin, D. Drake, and E. Stoffels. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans Plasma Sci 34(4):1317–1324, 2006.

    Article  CAS  Google Scholar 

  19. Gostev, V. and D. Dobrynin. Medical microplasmatron. In: 3rd International Workshop on Microplasmas (IWM-2006), Greifswald, Germany, 2006.

  20. Hu, W., and J. J. Kavanagh. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol. 4(12):721–729, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Jaattela, M. Programmed cell death: many ways for cells to die decently. Ann. Med. 34(6):480–488, 2002.

    Article  PubMed  Google Scholar 

  22. Kalghatgi, S., et al. Applications of non thermal atmospheric pressure plasma in medicine. In: NATO Advanced Study Institute on Plasma Assisted Decontamination of Biological and Chemical Agents. Cesme-Izmir, Turkey: Springer, 2007.

  23. Kalghatgi, S., et al. Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans. Plasma Sci. 35(5):1559–1566, 2007.

    Article  CAS  Google Scholar 

  24. Kalghatgi, S., et al. Penetration of direct non-thermal plasma treatment into living cells. In: IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 2008.

  25. Kalghatgi, S., et al. Toxicity analysis of direct non-thermal plasma treatment of living tissue. In: IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 2008.

  26. Kalghatgi, S., et al. Toxicity of non-thermal plasma treatment of endothelial cells. In: IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 2008.

  27. Kalghatgi, S. U., et al. Non-thermal dielectric barrier discharge plasma treatment of endothelial cells. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada: Inst. of Elec. and Elec. Eng. Computer Society, 2008.

  28. Kalghatgi, S., et al. On the interaction of non-thermal atmospheric pressure plasma with tissues. In: Proceedings of the IEEE 17th International Pulsed Power Conference, Washington, DC, 2009.

  29. Kalghatgi, S., et al. Toxicity of direct non-thermal atmospheric pressure plasma treatment of living tissue. In: Proceedings of the IEEE 17th International Pulsed Power Conference, Washington DC, 2009.

  30. Kalghatgi, S., et al. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38(3):748–757, 2010.

    Article  PubMed  Google Scholar 

  31. Kawiak, A., et al. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicol. Appl. Pharmacol. 223(3):267–276, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Kieft, I. E., M. Kurdi, and E. Stoffels. Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans. Plasma Sci. 34(4):1331–1336, 2006.

    Article  CAS  Google Scholar 

  33. Kieft, I. E., et al. Plasma treatment of mammalian vascular cells: a quantitative description. IEEE Trans. Plasma Sci. 33(2):771–775, 2005.

    Article  Google Scholar 

  34. Kogelschatz, U., et al. Non-Equilibrium Air Plasmas at Atmospheric Pressure. 1st ed. Plasma Physics. London: Taylor & Francis, 2004.

  35. Kuo, S. P., O. Tarasenko, S. Popovic, and K. Levon. Killing of bacterial spores contained in a paper envelope by a microwave plasma torch. IEEE Trans. Plasma Sci. 34(4):1275–1280, 2006.

    Article  CAS  Google Scholar 

  36. Laroussi, M. Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2:391–400, 2005.

    Article  CAS  Google Scholar 

  37. Laroussi, M., I. Alexeff, and W. L. Kang. Biological decontamination by nonthermal plasmas. IEEE Trans. Plasma Sci. 28(1):184–188, 2000.

    Article  Google Scholar 

  38. Laroussi, M., and F. Leipold. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233(1–3):81–86, 2004.

    CAS  Google Scholar 

  39. Laroussi, M., D. A. Mendis, and M. Rosenberg. Plasma interaction with microbes. New J. Phys. 5:41.1–41.10, 2003.

    Article  Google Scholar 

  40. Laroussi, M., et al. Inactivation of bacteria by the plasma pencil. Plasma Process. Polym. 3(6–7):470–473, 2006.

    Article  CAS  Google Scholar 

  41. Lehnert, B. E., and R. Iyer. Exposure to low-level chemicals and ionizing radiation: reactive oxygen species and cellular pathways. Hum. Exp. Toxicol. 21(2):65–69, 2002.

    Article  PubMed  CAS  Google Scholar 

  42. Léveillé, V., and S. Coulombe. Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species. Plasma Sources Sci. Technol. 14:467–476, 2005.

    Article  Google Scholar 

  43. Lord, M. J., J. A. Maltry, and L. M. Shall. Thermal injury resulting from arthroscopic lateral retinacular release by electrocautery: report of three cases and a review of the literature. Arthroscopy 7(1):33–37, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Majno, G., and I. Joris. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146(1):3–15, 1995.

    PubMed  CAS  Google Scholar 

  45. Mandara, M., et al. Chemotherapy for metastatic melanoma. Expert Rev. Anticancer Ther. 6(1):121–130, 2006.

    Article  PubMed  CAS  Google Scholar 

  46. Nuccitelli, R., et al. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int. J. Cancer 125(2):438–445, 2009.

    Article  PubMed  CAS  Google Scholar 

  47. Pak, B. J., et al. Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene 23(1):30–38, 2004.

    Article  PubMed  CAS  Google Scholar 

  48. Porter, K. A., et al. Electrocautery as a factor in seroma formation following mastectomy. Am. J. Surg. 176(1):8–11, 1998.

    Article  PubMed  CAS  Google Scholar 

  49. Puhlev, I., et al. Desiccation tolerance in human cells. Cryobiology 42(3):207–217, 2001.

    Article  PubMed  CAS  Google Scholar 

  50. Raiser, J., and M. Zenker. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J. Phys. D: Appl. Phys. 39(16):3520, 2006.

    Article  CAS  Google Scholar 

  51. Rappaport, W. D., et al. Effect of electrocautery on wound healing in midline laparotomy incisions. Am. J. Surg. 160(6):618–620, 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Rath, P. C., and B. B. Aggarwal. TNF-induced signaling in apoptosis. J. Clin. Immunol. 19(6):350–364, 1999.

    Article  PubMed  CAS  Google Scholar 

  53. Ratha, J., et al. Attenuated Leishmanial sphingolipid induces apoptosis in A375 human melanoma cell via both caspase-dependent and -independent pathways. Mol. Cell. Biochem. 304(1–2):143–154, 2007.

    Article  PubMed  CAS  Google Scholar 

  54. Reed, J. C. Apoptosis-based therapies. Nat. Rev. Drug. Discov. 1(2):111–121, 2002.

    Article  PubMed  CAS  Google Scholar 

  55. Rogakou, E., et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273:5858–5868, 1998.

    Article  PubMed  CAS  Google Scholar 

  56. Schild, S. E. Role of radiation therapy in the treatment of melanoma. Expert Rev. Anticancer Ther. 9(5):583–586, 2009.

    Article  PubMed  CAS  Google Scholar 

  57. Sharma, A., A. Pruden, O. Stan, G. J. Collins. Bacterial inactivation using an RF-powered atmospheric pressure plasma. IEEE Trans. Plasma Sci. 34(4), 2006.

  58. Shekhter, A. B., et al. Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide Biol. Chem. 12(4): 210–219, 2005.

    Google Scholar 

  59. Siemens, C. W. On the electrical tests employed during the construction of the Malta and Alexandria telegraph, and on insulating and protecting submarine cables. J. Frankl. Inst. 74(3):166–170, 1862.

    Article  Google Scholar 

  60. Simmons, P. D., F. Langlet, and R. N. Thin. Cryotherapy versus electrocautery in the treatment of genital warts. Br. J. Vener. Dis. 57(4):273–274, 1981.

    PubMed  CAS  Google Scholar 

  61. Sladek, R. E. J., and E. Stoffels. Deactivation of Escherichia coli by the plasma needle. J. Phys. D: Appl. Phys. 38:1716–1721, 2005.

    Article  CAS  Google Scholar 

  62. Soengas, M. S., and S. W. Lowe. Apoptosis and melanoma chemoresistance. Oncogene 22(20):3138–3151, 2003.

    Article  PubMed  CAS  Google Scholar 

  63. Stevens, G., and A. Hong. Radiation therapy in the management of cutaneous melanoma. Surg. Oncol. Clin. N. Am. 15(2):353–371, 2006.

    Article  PubMed  Google Scholar 

  64. Stoffels, E. Gas plasmas in biology and medicine. J. Phys. D: Appl. Phys. 39(16), 2006.

  65. Stoffels, E., et al. Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Sci. Technol. 15(4):S169–S180, 2006.

    Article  CAS  Google Scholar 

  66. Stoffels, E., et al. Cold gas plasma in biology and medicine. In: Advanced Plasma Technology, edited by R. d’Agostino. Weinheim: Wiley-VCH, 2008, pp. 301–318.

    Google Scholar 

  67. Tarasenko, O., S. Nourbakhsh, S. P. Kuo, A. Bakhtina, P. Alusta, D. Kudasheva, M. Cowman, and K. Levon. Scanning electron and atomic force microscopy to study plasma torch effects on B. cereus Spores. IEEE Trans. Plasma Sci. 34(4):1281–1289, 2006.

    Article  CAS  Google Scholar 

  68. Vargo, J. J. Clinical applications of the argon plasma coagulator. Gastrointest. Endosc. 59(1):81–88, 2004.

    Article  PubMed  Google Scholar 

  69. Williamson, J. M., D. D. Trump, P. Bletzinger, and B. N. Ganguly. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge. J. Phys. D: Appl. Phys. 39:4400–4406, 2006.

    Article  CAS  Google Scholar 

  70. Yang, J., Y. Su, and A. Richmond. Antioxidants tiron and N-acetyl-l-cysteine differentially mediate apoptosis in melanoma cells via a reactive oxygen species-independent NF-kappaB pathway. Free Radic. Biol. Med. 42(9):1369–1380, 2007.

    Article  PubMed  CAS  Google Scholar 

  71. Zafarullah, M., et al. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 60(1):6–20, 2003.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang, R., L. Wang, Y. Wu, Z. Guan, and Z. Jia. Bacterial decontamination of water by bipolar pulsed discharge in a gas; liquid; solid three-phase discharge reactor. IEEE Trans. Plasma Sci. 34(4):1370–1374, 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Monica Jost for her help and guidance with the TUNEL assay and Dr. Christian Sell for allowing us to use his flow cytometer to carry out the Annexin-V/PI assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Kalghatgi.

Additional information

Associate Editor Bahman Anvari oversaw the review of this article.

The first two authors have contributed equally to this work.

A retraction note to this article is available at http://dx.doi.org/10.1007/s10439-013-0740-7.

This article is being retracted due to the discovery of identical data in the following publication by Fridman et al.: (Plasma Chem Plasma Process (2007) 27:163-176; DOI: 10.1007/s11090-007-9048-4).

An erratum to this article is available at http://dx.doi.org/10.1007/s10439-013-0740-7.

About this article

Cite this article

Sensenig, R., Kalghatgi, S., Cerchar, E. et al. RETRACTED ARTICLE: Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species. Ann Biomed Eng 39, 674–687 (2011). https://doi.org/10.1007/s10439-010-0197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0197-x

Keywords

Navigation