Skip to main content

Advertisement

Log in

An Innovative Method to Measure the Peripheral Arterial Elasticity: Spring Constant Modeling Based on the Arterial Pressure Wave with Radial Vibration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, we propose an innovative method for the direct measurement of the peripheral artery elasticity using a spring constant model, based on the arterial pressure wave equation, vibrating in a radial direction. By means of the boundary condition of the pressure wave equation at the maximum peak, we can derive the spring constant used for evaluating peripheral arterial elasticity. The calculated spring constants of six typical subjects show a coincidence with their proper arterial elasticities. Furthermore, the comparison between the spring constant method and pulse wave velocity (PWV) was investigated in 70 subjects (21–64 years, 47 normotensives and 23 hypertensives). The results reveal a significant negative correlation for the spring constant vs. PWV (correlation coefficient = −0.663, p < 0.001). Multivariate analysis also indicates the same close relationship. Furthermore, within-operator and between-operator analyses show significantly high reproducibility. Therefore, the use of the spring constant method to assess the arterial elasticity is carefully verified, and it is shown to be effective as well as fast. This method should be useful for healthcare, not only in improving clinical diagnosis of arterial stiffness but also in screening subjects for early evidence of cardio-vascular diseases and in monitoring responses to therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Armentano, R. L., J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel. Arterial wall mechanics in conscious dogs. Circ. Res. 76:468–478, 1995.

    PubMed  CAS  Google Scholar 

  2. Avigad, G., and E. Eisenstadt. Robustness of multi-objective optimal solutions to physical deterioration through active control. LNCS 6457:394–403, 2010.

    Google Scholar 

  3. Baker, P. D., D. R. Westenskow, and K. Kuck. Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure. Med. Biol. Eng. Comput. 35:271–278, 1997.

    Article  PubMed  CAS  Google Scholar 

  4. Cohn, J. N., S. M. Finkelstein, G. McVeigh, D. J. Morgan, L. LeMay, J. Robinson, and J. Mock. Noninvasive pulse wave analysis for the early detection of vascular disease. Hypertension 26:503–508, 1995.

    PubMed  CAS  Google Scholar 

  5. Fang, S. E., and R. Perera. Power mode shapes for early damage detection in linear structures. J. Sound Vib. 324:40–56, 2009.

    Article  Google Scholar 

  6. Fetics, B., E. Nevo, C. H. Chen, and D. A. Kass. Parametric model derivation of transfer function for noninvasive estimation of aortic pressure. IEEE Trans. Biomed. Eng. 46:698–706, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Fey, J. F. Contemporary Sphygmology in Traditional Chinese Medicine. Beijing: People’s Medical Publishing House, p. 164, 2003; (in Chinese).

    Google Scholar 

  8. Hecht, E. Physics: Calculus (2nd ed.). Pacific Grove, CA: Brooks/Cole, pp. 408–429, 2000.

    Google Scholar 

  9. Jatoi, N. A., A. Mahmud, K. Bennett, and J. Feely. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J. Hypertens. 27:2186–2191, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Kelly, R., C. Hayward, A. Avolio, and M. O’Rourke. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80:1652–1659, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Lardner, T. J. Resonance and the aging spring. J. Appl. Mech. 69:397–398, 2002.

    Article  Google Scholar 

  12. Laurent, S., J. Cockcroft, L. V. Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier. Expert consensus document on arterial stiffness methodological issues and clinical applications. Eur. Heart J. 27:2588–2605, 2006.

    Article  PubMed  Google Scholar 

  13. Lin Wang, Y. Y., W. C. Lia, H. Hsiu, and M. Y. Jan. Effect of length on the fundamental resonance frequency of arterial models having radial dilation. IEEE Trans. Biomed. Eng. 47:313–318, 2000.

    Article  Google Scholar 

  14. Liu, C. Y., C. C. Wei, and P. C. Lo. Variation analysis of sphygmogram to assess cardiovascular system under meditation. Evid. Based Complement Alternat. Med. 6:107–112, 2009.

    Article  PubMed  Google Scholar 

  15. Mackenzie, I. S., I. B. Wilkinson, and J. R. Cockcroft. Assessment of arterial stiffness in clinical practice. QJM 95:67–74, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Mancia, G., G. De Backer, and A. Dominiczak. 2007 Guidelines for the management of arterial hypertension. The task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). J. Hypertens. 25:1105–1187, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. McVeigh, G. E., C. W. Bratteli, D. J. Morgan, C. M. Alinder, S. P. Glasser, S. M. Finkelstein, and J. N. Cohn. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension 33:1392–1398, 1999.

    PubMed  CAS  Google Scholar 

  18. Milnor, W. R. Hemodynamics, 2nd ed. Baltimore, MD: Williams & Wilkins Co, 1989, pp. 95–97, 106–108.

  19. Munir, S., A. Guilcher, T. Kamalesh, B. Clapp, S. Redwood, M. Marber, and P. Chowienczyk. Peripheral augmentation index defines the relationship between central and peripheral pulse pressure. Hypertension 51:112–118, 2008.

    Article  PubMed  CAS  Google Scholar 

  20. Nichols, W. W. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18:3–10, 2005.

    Article  Google Scholar 

  21. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries (5th ed.). New York: Oxford University Press, pp. 49–58, 2005.

    Google Scholar 

  22. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries, 5th ed. New York: Oxford University Press, 2005, pp. 185, 245.

  23. O’Rourke, M. F., and W. W. Nichols. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658, 2005.

    Article  PubMed  Google Scholar 

  24. Oliver, J. J., and D. J. Webb. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler. Thromb. Vasc. Biol. 23:554–566, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Raamat, R., J. Talts, K. Jagomagi, and E. Lansimies. Mathematical modeling of non-invasive oscillometric finger mean blood pressure measurement by maximum oscillation criterion. Med. Biol. Eng. Comput. 37:784–788, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Rajzer, M. W., W. Wojciechowska, M. Klocek, I. Palka, M. Brzozowska-Kiszka, and K. Kawecka-Jaszcz. Comparison of aortic pulse wave velocity measured by three techniques Complior SphygmoCor and Arteriograph. J. Hypertens. 26:2001–2007, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Smith, S. A., J. M. Morris, and E. D. Gallery. Methods of assessment of the arterial pulse wave in normal human pregnancy. Am. J. Obstet. Gynecol. 190:472–476, 2004.

    Article  PubMed  Google Scholar 

  28. Smulyan, H., D. S. Siddiqui, R. J. Carlson, G. M. London, and M. E. Safar. Clinical utility of aortic pulses and pressures calculated from applanated radial-artery pulses. Hypertension 42:150–155, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Takazawa, K., N. Tanaka, M. Fujita, O. Matsuoka, T. Saiki, M. Aikawa, S. Tamura, and C. Ibukiyama. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension 32:365–370, 1998.

    PubMed  CAS  Google Scholar 

  30. Urbina, E. M., R. V. Williams, B. S. Alpert, R. T. Collins, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents. Hypertension 54:919–950, 2009.

    Article  PubMed  CAS  Google Scholar 

  31. VanBavel, E., P. Siersma, and J. A. E. Spaan. Elasticity of passive blood vessels: a new concept. Am. J. Physiol. Heart Circ. Physiol. 285:1986–2000, 2003.

    Google Scholar 

  32. Wang Lin, Y. Y., C. C. Chang, J. C. Chen, H. Hsiu, and W. K. Wang. Pressure wave propagation in arteries: a model with radial dilation for simulating the behavior of a real artery. IEEE Eng. Med. Biol. Mag. 16:51–56, 1997.

    Article  Google Scholar 

  33. Wei, C. C., C. M. Huang, and Y. T. Liao. The exponential decay characteristic of the spectral distribution of blood pressure wave in radial artery. Comput. Biol. Med. 39:453–459, 2009.

    Article  PubMed  Google Scholar 

  34. Wilkinson, I. B., S. A. Fuchs, I. M. Jansen, J. C. Spratt, G. D. Murray, J. R. Cockcroft, and D. J. Webb. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J. Hypertens. 16:2079–2084, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Yamashina, A., H. Tomiyama, K. Takeda, H. Tsuda, T. Arai, K. Hirose, Y. Koji, S. Hori, and Y. Yamamoto. Validity, reproducibility, and clinical significance of non-invasive brachial-ankle pulse wave velocity measurement. Hypertens. Res. 25:359–364, 2002.

    Article  PubMed  Google Scholar 

  36. Yasmin, and M. J. Brown. Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. QJM 92:595–600, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Yoon, Y. Z., M. H. Lee, and K. S. Soh. Pulse type classification by varying contact pressure. IEEE Eng. Med. Biol. Mag. 19:106–110, 2000.

    PubMed  CAS  Google Scholar 

  38. Zill, D. G., and M. R. Cullen. Advanced Engineering Mathematics. Sudbury, MA: Jones & Bartlett Publishers, Inc., 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chuan Wei.

Additional information

Associate Editor Zahra Moussavi oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, CC. An Innovative Method to Measure the Peripheral Arterial Elasticity: Spring Constant Modeling Based on the Arterial Pressure Wave with Radial Vibration. Ann Biomed Eng 39, 2695–2705 (2011). https://doi.org/10.1007/s10439-011-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0357-7

Keywords

Navigation