Skip to main content
Log in

Femoral Head Shape Differences During Development May Identify Hips at Risk of Degeneration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Developmental dysplasia of the hip (DDH) is a common cause of elevated contact stress and early onset osteoarthritis (OA). We hypothesized that adaptation to focal loading during postnatal development would result in signature changes to the shape of the femoral head secondary center of ossification (SCO). SCO shape was evaluated in a canine model of DDH at ages 14 and 32 weeks. The evolving 3D morphology of the SCO was captured using serial quantitative computed tomography. A discrete medial representation shape model was fit to each SCO and served as the basis for quantitative thickness and bending measurements. Shape measurements were tested for associations with hip subluxation and degeneration. At 32 weeks, the SCO was thinner (flatter) in the perifoveal region, the site of focal loading; a greater bend to the SCO was present lateral to the site of thinning; SCO thinning and bending were associated with less femoral head coverage and with a higher probability of degeneration. Shape changes were not detected at 14 weeks. Measurement and visualization of SCO shape changes due to altered loading may provide a basis for identifying hips at risk of early onset OA and a tool for surgical planning of hip restructuring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Babis, G. C., V. I. Sakellariou, M. I. O’Connor, A. D. Hanssen, and F. H. Sim. Proximal femoral allograft-prosthesis composites in revision hip replacement: a 12-year follow-up study. J. Bone Joint Surg. Br. 92:349–355, 2010.

    Article  PubMed  CAS  Google Scholar 

  2. Berry, D. J., W. S. Harmsen, M. E. Cabanela, and B. F. Morrey. Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. J. Bone Joint Surg. Am. 84-A:171–177, 2002.

    PubMed  Google Scholar 

  3. Buckwalter, J. A., C. Saltzman, and T. Brown. The impact of osteoarthritis: implications for research. Clin. Orthop. Relat. Res. 427(Suppl):S6–S15, 2004.

    Article  PubMed  Google Scholar 

  4. Burton-Wurster, N., J. P. Farese, R. J. Todhunter, and G. Lust. Site-specific variation in femoral head cartilage composition in dogs at high and low risk for development of osteoarthritis: insights into cartilage degeneration. Osteoarthritis Cartilage 7:486–497, 1999.

    Article  PubMed  CAS  Google Scholar 

  5. Clohisy, J. C., P. E. Beaule, A. O’Malley, M. R. Safran, and P. Schoenecker. AOA symposium. Hip disease in the young adult: current concepts of etiology and surgical treatment. J. Bone Joint Surg. Am. 90:2267–2281, 2008.

    Article  PubMed  Google Scholar 

  6. Clohisy, J. C., J. C. Carlisle, R. Trousdale, Y. J. Kim, P. E. Beaule, P. Morgan, K. Steger-May, P. L. Schoenecker, and M. Millis. Radiographic evaluation of the hip has limited reliability. Clin. Orthop. Relat. Res. 467:666–675, 2009.

    Article  PubMed  Google Scholar 

  7. Cunningham, T., R. Jessel, D. Zurakowski, M. B. Millis, and Y. J. Kim. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J. Bone Joint Surg. Am. 88:1540–1548, 2006.

    Article  PubMed  Google Scholar 

  8. Fletcher, P. T., C. Lu, S. Pizer, and S. Joshi. Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23:995–1005, 2004.

    Article  PubMed  Google Scholar 

  9. Gettys, F. K., J. B. Jackson, and S. L. Frick. Obesity in pediatric orthopaedics. Orthop. Clin. North Am. 42:95–105, 2011.

    Article  PubMed  Google Scholar 

  10. Gonzalez, R. C., and R. E. Woods. Digital Image Processing. Upper Saddle River: Prentice Hall, p. 793, 2002.

    Google Scholar 

  11. Harrison, T. J. The influence of the femoral head on pelvic growth and acetabular form in the rat. J. Anat. 95:12–24, 1961.

    PubMed  CAS  Google Scholar 

  12. Jacobsen, S., L. Romer, and K. Soballe. The other hip in unilateral hip dysplasia. Clin. Orthop. Relat. Res 446:239–246, 2006.

    Article  PubMed  Google Scholar 

  13. Jacobsen, S., and S. Sonne-Holm. Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey. Rheumatology 44:211–218, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Jee, W. S. Integrated bone tissue physiology: anatomy and physiology. In: Bone Mechanics Handbook, edited by S. C. Cowin. Boca Raton: CRC Press LLC, 2001, pp. 1.1–1.68.

    Google Scholar 

  15. Kostis, W. J., A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans. Med. Imaging 22:1259–1274, 2003.

    Article  PubMed  Google Scholar 

  16. Langenskiold, A., O. Shapiro, and J. E. Michelsson. Experimental dislocation of the hip in the rabbit. J. Anat. 95:12–26, 1962.

    Google Scholar 

  17. Littell, R. C. Analysis of unbalanced mixed model data: a case study comparison of ANOVA versus REML/GLS. J. Agric. Biol. Environ. Stat. 7:472–490, 2003.

    Article  Google Scholar 

  18. Lust, G., R. J. Todhunter, H. N. Erb, N. L. Dykes, A. J. Williams, N. I. Burton-Wurster, and J. P. Farese. Repeatability of dorsolateral subluxation scores in dogs and correlation with macroscopic appearance of hip osteoarthritis. Am. J. Vet. Res. 62:1711–1715, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Mavcic, B., B. Pompe, V. Antolic, M. Daniel, A. Iglic, and V. Kralj-Iglic. Mathematical estimation of stress distribution in normal and dysplastic human hips. J. Orthop. Res. 20:1025–1030, 2002.

    Article  PubMed  CAS  Google Scholar 

  20. Maxian, T. A., T. D. Brown, and S. L. Weinstein. Chronic stress tolerance levels for human articular cartilage: two nonuniform contact models applied to long-term follow-up of CDH. J. Biomech. 28:159–166, 1995.

    Article  PubMed  CAS  Google Scholar 

  21. McLeod, K. J., C. T. Rubin, M. W. Otter, and Y. X. Qin. Skeletal cell stresses and bone adaptation. Am. J. Med. Sci. 316:176–183, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Merck, D., G. Tracton, R. Saboo, J. Levy, E. Chaney, S. Pizer, and S. Joshi. Training models of anatomic shape variability. Med. Phys. 35:3584–3596, 2008.

    Article  PubMed  Google Scholar 

  23. Oegema, T. R., and D. Visco. Animal models of osteoarthritis. In: Animal Models in Orthopaedic Research, edited by Y. H. An, and R. J. Friedman. New York: CRC Press, 1999, pp. 349–367.

    Google Scholar 

  24. Ogden, C. L., M. D. Carroll, L. R. Curtin, M. M. Lamb, and K. M. Flegal. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 303:242–249, 2010.

    Article  PubMed  CAS  Google Scholar 

  25. Pizer, S., D. S. Fritsch, P. A. Yushkevich, and V. Johnson. Segmentation, registration and measurement of shape variability via image object shape. IEEE Trans. Med. Imaging 18:851–865, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Pizer, S., Q. Han, S. Joshi, P. T. Fletcher, P. Yushkevich, and A. Thall. Synthesis, deformation, and statistics of 3D objects via m-reps. In: Medial Representations Mathematics, Algorithms and Applications, edited by K. Siddiqi, and S. M. Pizer. Heidelberg: Springer, 2008, pp. 241–266.

    Google Scholar 

  27. Pizer, S., K. Siddiqi, and P. Yushkevich. Introduction. In: Medial Representations Mathematics, Algorithms and Applications, edited by K. Siddiqi, and S. M. Pizer. Heidelberg: Springer, 2008, pp. 1–34.

    Google Scholar 

  28. Pizer, S., M. Styner, T. Terriberry, R. Broadhurst, S. Joshi, E. Chaney, and P. T. Fletcher. Statistical applications with deformable m-reps anatomic object segmentation and discrimination. In: Medial Representations Mathematics, Algorithms and Applications, edited by K. Siddiqi, and S. M. Pizer. Heidelberg: Springer, 2008, pp. 269–308.

    Google Scholar 

  29. Raudenbush, S. W., and A. S. Bryk. Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks: Sage, 485 pp, 2002.

    Google Scholar 

  30. Riser, W. H. The dog as a model for the study of hip dysplasia. Growth, form, and development of the normal and dysplastic hip joint. Vet. Pathol. 12:234–334, 1975.

    PubMed  CAS  Google Scholar 

  31. Russell, M. E., K. H. Shivanna, N. M. Grosland, and D. R. Pedersen. Cartilage contact pressure elevations in dysplastic hips: a chronic overload model. J. Orthop. Surg. 1:6, 2006.

    Article  Google Scholar 

  32. Smith, W. S., R. J. Ireton, and C. R. Coleman. Sequelae of experimental dislocation of a weight-bearing ball- and socket joint in a young growing animal; gross alterations in bone and cartilage. J. Bone Joint Surg. Am. 40-A:1121–1127, 1958.

    PubMed  CAS  Google Scholar 

  33. Vanden Berg-Foels, W. S., S. J. Schwager, R. J. Todhunter, and A. P. Reeves. Femoral head bone mineral density patterns may identify hips at risk of degeneration. Ann. Biomed. Eng. 39:75–84, 2011.

    Article  PubMed  Google Scholar 

  34. Vanden Berg-Foels, W. S., R. J. Todhunter, S. J. Schwager, and A. P. Reeves. Effect of early postnatal body weight on femoral head ossification onset and hip osteoarthritis in a canine model of developmental dysplasia of the hip. Pediatr. Res. 60:549–554, 2006.

    Article  PubMed  Google Scholar 

  35. Villemure, I., and I. A. Stokes. Growth plate mechanics and mechanobiology. A survey of present understanding. J. Biomech. 42:1793–1803, 2009.

    Article  PubMed  Google Scholar 

  36. Weinstein, S. L. Natural history of congenital hip dislocation (CDH) and hip dysplasia. Clin. Orthop. Relat. Res. 225:62–76, 1987.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Stephen M. Pizer for providing the Binary Pablo software and Drs. Gregg Tracton and Graham Gash for technical support and much practical advice. This research was supported by the New York State Advanced Technology Biotechnology Program (RJT, WSVBF), Cornell University College of Veterinary Medicine Consolidated Research Grant Program (RJT, WSVBF), NSF and AAUW Graduate Fellowships (WSVBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy S. Vanden Berg-Foels.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanden Berg-Foels, W.S., Schwager, S.J., Todhunter, R.J. et al. Femoral Head Shape Differences During Development May Identify Hips at Risk of Degeneration. Ann Biomed Eng 39, 2955–2963 (2011). https://doi.org/10.1007/s10439-011-0393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0393-3

Keywords

Navigation