Skip to main content

Advertisement

Log in

Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1–40 Hz at three different temperatures: 5, 25, and 37 °C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E′ and the loss modulus E″ were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aernouts, J., J. R. Aerts, and J. J. J. Dirckx. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear. Res., 2012. doi:10.1016/j.heares.2012.05.001.

  2. Aernouts, J., and J. J. J. Dirckx. Static vs. dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus. Biomech. Model. Mechanobiol., 2011. doi:10.1007/s10237-011-0355-6.

  3. Aernouts, J., and J. J. J. Dirckx. Viscoelastic properties of gerbil tympanic membrane at very low frequencies. J. Biomech. 45:919–924, 2012.

    Article  PubMed  Google Scholar 

  4. Chan, R. W. Estimation of viscoelastic shear properties of vocal-fold tissues based on time-temperature superposition. J. Acoust. Soc. Am. 110:1548–1561, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng, T., C. Dai, and R. Z. Gan. Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35:305–314, 2007.

    Article  PubMed  Google Scholar 

  6. Daphalapurkar, N. P., C. Dai, R. Z. Gan, and H. Lu. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. J. Mech. Behav. Biomed. Mater. 2:82–92, 2009.

    Article  PubMed  Google Scholar 

  7. Decraemer, W. F., M. A. Maes, and V. J. Vanhuyse. An elastic stress–strain relation for soft biological tissue based on a structural model. J. Biomech. 13:463–468, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Fay, J., S. Puria, W. F. Decraemer, and C. Steele. Three approaches for estimating the elastic modulus of the tympanic membrane. J. Biomech. 38:1807–1815, 2005.

    Article  PubMed  Google Scholar 

  9. Ferry, J. D. Mechanical properties of substances of high molecular weight. 6. Dispersion in concentrated polymer solutions and its dependence on temperature and concentration. J. Am. Chem. Soc. 72:3746–3752, 1950.

    Article  CAS  Google Scholar 

  10. Ferry, J. D. Viscoelastic Properties of Polymer (3rd ed.). New York: Wiley, pp. 264–320, 1980.

    Google Scholar 

  11. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer, pp. 260–263, 1993.

    Google Scholar 

  12. Gan, R. Z., B. Feng, and Q. Sun. Three-dimensional finite element modeling of human ear for sound transmission. Ann. Biomed. Eng. 32:847–859, 2004.

    Article  PubMed  Google Scholar 

  13. Gan, R. Z., B. P. Peeves, and X. Wang. Modeling of sound transmission from ear canal to cochlea. Ann. Biomed. Eng. 35:2180–2195, 2007.

    Article  PubMed  Google Scholar 

  14. Huang, G., N. P. Daphalapurkar, R. Z. Gan, and H. Lu. A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J. Biomech. Eng. 130:014501-1, 2008.

    Google Scholar 

  15. Kirikae, I. The Structure and Function of the Middle Ear. Tokyo: The University of Tokyo Press, 1960.

    Google Scholar 

  16. Kuyper, L. C., W. F. Decraemer, and J. J. J. Dirckx. Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otol. Neurotol. 27:256–264, 2006.

    Article  Google Scholar 

  17. Lim, D. J. Structure and function of the tympanic membrane: a review. Acta Otorhinolaryngol. Belg. 49:101–115, 1995.

    PubMed  CAS  Google Scholar 

  18. Luo, H., C. Dai, R. Z. Gan, and H. Lu. Measurement of Young’s modulus of human tympanic membrane at high strain rates. J. Biomech. Eng. 131:064501-1–8, 2009.

    Google Scholar 

  19. Mclaughlin, J., A. Thomas, and J. R. Yoon. Basic theory for generalized linear solid viscoelastic models. In: AMS Contemporary Mathematics Volume: Tomography and Inverse Transport Theory, edited by G. Bal, D. Finch, P. Kuchment, J. Schotland, P. Stefanov, and G. Uhlmann. Providence: American Mathematical Society, 2011, pp. 101–134.

  20. Nielsen, L. E., and R. F. Landel. Mechanical Properties of Polymers and Composites (2nd ed.). New York: Marcel Dekker, 1994.

    Google Scholar 

  21. Peters, G. W. M., J. H. Meulman, and A. A. H. J. Sauren. The applicability of the time/temperature superposition principle to brain tissue. Biorheology 34:127–138, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. Radebaugh, G. W., and A. P. Simonelli. Temperature-frequency equivalence of the viscoelastic properties of anhydrous lanolin USP. J. Pharm. Sci. 72:422–425, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Tajvidi, M., R. H. Falk, and J. C. Hermanson. Time-temperature superposition principle applied to a kenaf-fiber/high-density polyethylene composite. J. Appl. Polym. Sci. 97:1995–2004, 2005.

    Article  CAS  Google Scholar 

  24. von Békésy, G. Experiments in Hearing. New York: McGraw-Hill Book Company, 1960.

    Google Scholar 

  25. von Unge, M., W. F. Decraemer, J. J. Dirckx, and D. Bagger-Sjöbäck. Displacement of the gerbil tympanic membrane under static pressure variations measured with a real-time differential moire interferometer. Hear. Res. 70:229–242, 1993.

    Article  Google Scholar 

  26. Ward, I. M. Mechanical Properties of Solid Polymers. New York: Wiley, 1971.

    Google Scholar 

  27. Williams, M. L., R. F. Landel, and J. D. Ferry. Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Phys. Rev. 98:1549–1549, 1955.

    Google Scholar 

  28. Zhang, X., and R. Z. Gan. Dynamic properties of human tympanic membrane-experimental measurement and modeling analysis. Int. J. Exp. Comput. Biomech. 1:252–270, 2010.

    Article  Google Scholar 

  29. Zhang, X., and R. Z. Gan. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans. Biomed. Eng. 58(10):3024–3027, 2011.

    Article  PubMed  Google Scholar 

  30. Zhao, F., T. Koike, J. Wang, H. Sienz, and R. Meredith. Finite element analysis of the middle ear transfer functions and related pathologies. Med. Eng. Phys. 31(8):907–916, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the technical assistance on the TM sample preparations from Don Nakmali at Hough Ear Institute, Oklahoma City. This work was supported by NIH R01DC006632 and R01DC011585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Z. Gan.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Gan, R.Z. Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition. Ann Biomed Eng 41, 205–214 (2013). https://doi.org/10.1007/s10439-012-0624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0624-2

Keywords

Navigation