Skip to main content

Advertisement

Log in

Vascular Remodeling in Autogenous Arterio-Venous Fistulas by MRI and CFD

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hemodynamic parameters play an important role in regulating vascular remodeling in arterio-venous fistula (AVF) maturation. Investigating the changes in hemodynamic parameters during AVF maturation is expected to improve our understanding of fistula failure, but very little data on actual temporal changes in human AVFs is available. The present study aimed to assess the feasibility of using a noncontrast-enhanced MRI protocol combined with CFD modeling to relate hemodynamic changes to vascular remodeling following native AVF placement. MR angiography (MRA) and MR velocimetry (MRV) data was acquired peri-operatively, 1 month, and 3 months later in three patients. Vascular geometries were obtained by segmentation of the MRA images. Pulsatile flow simulations were performed in the patient specific vascular geometries with time-dependent boundary conditions prescribed from MRV measurements. A principal result of the study is the description of WSS changes over time in the same patients. The disturbed flow observed in the venous segments resulted in a variability of the WSS distribution and could be responsible for the non-uniform remodeling of the vessel. The artery did not show regions of disturbed flow upstream from the anastomosis, which would be consistent with the uniform remodeling. MRI use demonstrated the ability to provide a comprehensive evaluation of clinically relevant information for the investigation of upper extremity AVFs. 3D geometry from MRA in combination with MRV provides the opportunity to perform detailed CFD analysis of local hemodynamics in order to determine flow descriptors affecting fistula maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Achneck, H. E., B. Sileshi, M. Li, E. J. Partington, D. A. Peterson, and J. H. Lawson. Surgical aspects and biological considerations of arteriovenous fistula placement. Semin. Dial. 23:25–33, 2010.

    Article  PubMed  Google Scholar 

  2. Badero, O. J., M. O. Salifu, H. Wasse, and J. Work. Frequency of swing-segment stenosis in referred dialysis patients with angiographically documented lesions. Am. J. Kidney Dis. 51:93–98, 2008.

    Article  PubMed  Google Scholar 

  3. Beathard, G. A., P. Arnold, J. Jackson, and T. Litchfield. Aggressive treatment of early fistula failure. Kidney Int. 64:1487–1494, 2003.

    Article  PubMed  Google Scholar 

  4. Carroll, G. T., T. M. McGloughlin, P. E. Burke, M. Egan, F. Wallis, and M. T. Walsh. Wall shear stresses remain elevated in mature arteriovenous fistulas: a case study. J. Biomech. Eng. 133:021003, 2011.

    Article  PubMed  CAS  Google Scholar 

  5. Dammers, R., J. H. Tordoir, J. P. Kooman, R. J. Welten, J. M. Hameleers, P. J. Kitslaar, and A. P. Hoeks. The effect of flow changes on the arterial system proximal to an arteriovenous fistula for hemodialysis. Ultrasound. Med. Biol. 31:1327–1333, 2005.

    Article  PubMed  Google Scholar 

  6. Dixon, B. S. Why don’t fistulas mature? Kidney Int. 70:1413–1422, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Ene-Iordache, B., L. Mosconi, L. Antiga, S. Bruno, A. Anghileri, G. Remuzzi, and A. Remuzzi. Radial artery remodeling in response to shear stress increase within arteriovenous fistula for hemodialysis access. Endothelium. 10:95–102, 2003.

    Article  PubMed  Google Scholar 

  8. Ene-Iordache, B., L. Mosconi, G. Remuzzi, and A. Remuzzi. Computational fluid dynamics of a vascular access case for hemodialysis. J. Biomech. Eng. 123:284–292, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Ene-Iordache, B., and A. Remuzzi. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol. Dial. Transplant. 27:358–368, 2011.

    Article  PubMed  Google Scholar 

  10. Helmke, B. P., and P. F. Davies. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30:284–296, 2002.

    Article  PubMed  Google Scholar 

  11. Hofstra, L., D. C. Bergmans, K. M. Leunissen, A. P. Hoeks, P. J. Kitslaar, M. J. Daemen, and J. H. Tordoir. Anastomotic intimal hyperplasia in prosthetic arteriovenous fistulas for hemodialysis is associated with initial high flow velocity and not with mismatch in elastic properties. J. Am. Soc. Nephrol. 6:1625–1633, 1995.

    PubMed  CAS  Google Scholar 

  12. Hofstra, L., D. C. Bergmans, K. M. Leunissen, A. P. Hoeks, P. J. Kitslaar, and J. H. Tordoir. Prosthetic arteriovenous fistulas and venous anastomotic stenosis: influence of a high flow velocity on the development of intimal hyperplasia. Blood Purif. 14:345–349, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. III. NKF-K/DOQI clinical practice guidelines for vascular access: Update 2000. Am. J. Kidney Dis.37:S137–S181, 2001.

  14. Kharboutly, Z., V. Deplano, E. Bertrand, and C. Legallais. Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med. Eng. Phys. 32:111–118, 2010.

    Article  PubMed  Google Scholar 

  15. Kharboutly, Z., J. M. Treutenaere, I. Claude, and C. Legallais. Arterio-venous fistula: two cases realistic numerical blood flow simulations. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007:2980–2983, 2007.

    PubMed  CAS  Google Scholar 

  16. Kheda, M. F., L. E. Brenner, M. J. Patel, J. J. Wynn, J. J. White, L. M. Prisant, S. A. Jones, and W. D. Paulson. Influence of arterial elasticity and vessel dilatation on arteriovenous fistula maturation: a prospective cohort study. Nephrol. Dial. Transplant. 25:525–531, 2010.

    Article  PubMed  Google Scholar 

  17. Krishnamoorthy, M. K., R. K. Banerjee, Y. Wang, J. Zhang, A. S. Roy, S. F. Khoury, L. J. Arend, S. Rudich, and P. Roy-Chaudhury. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula. Kidney Int. 74:1410–1419, 2008.

    Article  PubMed  Google Scholar 

  18. Laissy, J. P., D. Menegazzo, M. P. Debray, A. Loshkajian, B. Viron, F. Mignon, and E. Schouman-Claeys. Failing arteriovenous hemodialysis fistulas: assessment with magnetic resonance angiography. Invest. Radiol. 34:218–224, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Lankhaar, J. W., M. B. Hofman, J. T. Marcus, J. J. Zwanenburg, T. J. Faes, and A. Vonk-Noordegraaf. Correction of phase offset errors in main pulmonary artery flow quantification. J. Magn. Reson. Imaging. 22:73–79, 2005.

    Article  PubMed  Google Scholar 

  20. Lazo-Langner, A., G. A. Knoll, P. S. Wells, N. Carson, and M. A. Rodger. The risk of dialysis access thrombosis is related to the transforming growth factor-beta1 production haplotype and is modified by polymorphisms in the plasminogen activator inhibitor-type 1 gene. Blood. 108:4052–4058, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. Lehoux, S., and A. Tedgui. Signal transduction of mechanical stresses in the vascular wall. Hypertension. 32:338–345, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Lin, C. C., W. C. Yang, S. J. Lin, T. W. Chen, W. S. Lee, C. F. Chang, P. C. Lee, S. D. Lee, T. S. Su, C. S. Fann, and M. Y. Chung. Length polymorphism in heme oxygenase-1 is associated with arteriovenous fistula patency in hemodialysis patients. Kidney Int. 69:165–172, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Lomonte, C., F. Casucci, M. Antonelli, B. Giammaria, N. Losurdo, G. Marchio, and C. Basile. Is there a place for duplex screening of the brachial artery in the maturation of arteriovenous fistulas? Semin. Dial. 18:243–246, 2005.

    Article  PubMed  Google Scholar 

  24. Markl, M., R. Bammer, M. T. Alley, C. J. Elkins, M. T. Draney, A. Barnett, M. E. Moseley, G. H. Glover, and N. J. Pelc. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn. Reson. Med. 50:791–801, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28:143–156, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Misra, S., A. A. Fu, K. D. Misra, J. F. Glockner, and D. Mukhopadhyay. Wall shear stress measurement using phase contrast magnetic resonance imaging with phase contrast magnetic resonance angiography in arteriovenous polytetrafluoroethylene grafts. Angiology. 60:441–447, 2009.

    Article  PubMed  Google Scholar 

  27. Misra, S., D. A. Woodrum, J. Homburger, S. Elkouri, J. N. Mandrekar, V. Barocas, J. F. Glockner, D. K. Rajan, and D. Mukhopadhyay. Assessment of wall shear stress changes in arteries and veins of arteriovenous polytetrafluoroethylene grafts using magnetic resonance imaging. Cardiovasc. Intervent. Radiol. 29:624–629, 2006.

    Article  PubMed  Google Scholar 

  28. Rayz, V. L., L. Boussel, G. Acevedo-Bolton, A. J. Martin, W. L. Young, M. T. Lawton, R. Higashida, and D. Saloner. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130:051011, 2008.

    Article  PubMed  Google Scholar 

  29. Rayz, V. L., L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida, and D. Saloner. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36:1793–1804, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Robbin, M. L., N. E. Chamberlain, M. E. Lockhart, M. H. Gallichio, C. J. Young, M. H. Deierhoi, and M. Allon. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology 225:59–64, 2002.

    Article  PubMed  Google Scholar 

  31. Roy-Chaudhury, P., V. P. Sukhatme, and A. K. Cheung. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J. Am. Soc. Nephrol. 17:1112–1127, 2006.

    Article  PubMed  Google Scholar 

  32. Schirmer, C. M., and A. M. Malek. Patient based computational fluid dynamic characterization of carotid bifurcation stenosis before and after endovascular revascularization. J. Neurointerv. Surg. 4(6):448–454, 2011.

    Article  PubMed  Google Scholar 

  33. Sivanesan, S., T. V. How, and A. Bakran. Characterizing flow distributions in AV fistulae for haemodialysis access. Nephrol. Dial. Transplant. 13:3108–3110, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Sivanesan, S., T. V. How, and A. Bakran. Sites of stenosis in AV fistulae for haemodialysis access. Nephrol. Dial. Transplant. 14:118–120, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Stadler, A. F., A. Frydrychowich, M. F. Russe, J. G. Korvink, J. Hennig, K. C. Li, and M. Markl. Analysis of Reynolds, Strouhal and Womerseley numbers in the healthy thoracic aorta. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2011.

  36. Suh, G. Y., A. S. Les, A. S. Tenforde, S. C. Shadden, R. L. Spilker, J. J. Yeung, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Hemodynamic changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Eng. 39:2186–2202, 2011.

    Article  PubMed  Google Scholar 

  37. Traub, O., and B. C. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Hemodynamics and complications encountered with arteriovenous fistulas and grafts as vascular access for hemodialysis: a review. Ann. Biomed. Eng. 33:1142–1157, 2005.

    Article  PubMed  Google Scholar 

  39. Waldman, G. J., P. M. Pattynama, P. C. Chang, C. Verburgh, J. H. Reiber, and A. de Roos. Magnetic resonance angiography of dialysis access shunts: initial results. Magn. Reson. Imaging. 14:197–200, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by a VA Merit award (DS), and a NIH grant NS059891 (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Sigovan.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigovan, M., Rayz, V., Gasper, W. et al. Vascular Remodeling in Autogenous Arterio-Venous Fistulas by MRI and CFD. Ann Biomed Eng 41, 657–668 (2013). https://doi.org/10.1007/s10439-012-0703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0703-4

Keywords

Navigation