Skip to main content

Advertisement

Log in

A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Non-invasive assessment of arterial stiffness through pulse wave velocity (PWV) analysis is becoming common clinical practice. However, the effects of measurement noise, temporal resolution and similarity of the two waveforms used for PWV calculation upon accuracy and variability are unknown. We studied these effects upon PWV estimates given by foot-to-foot, least squared difference, and cross-correlation algorithms. We assessed accuracy using numerically generated blood pressure and flow waveforms for which the theoretical PWV was known to compare with the algorithm estimates. We assessed variability using clinical measurements in 28 human subjects. Wave shape similarity was quantified using a cross correlation-coefficient (CCCoefficient), which decreases with increasing distance between waveform measurements sites. Based on our results, we propose the following criteria to identify the most accurate and least variable algorithm given the noise, resolution and CCCoefficient of the measured waveforms. (1) Use foot-to-foot when the noise-to-signal ratio ≤10%, and/or temporal resolution ≥100 Hz. Otherwise (2) use a least squares differencing method applied to the systolic upstroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alastruey, J., A. W. Khir, K. S. Matthys, et al. Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44(12):2250–2258, 2011.

    Article  PubMed  Google Scholar 

  2. Benthin, M., P. Dahl, R. Ruzicka, and K. Lindström. Calculation of pulse-wave velocity using cross correlation—effects of reflexes in the arterial tree. Ultrasound Med. Biol. 17(5):461–496, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Bramwell, J. C. and A. V. Hill. The velocity of the pulse wave in man. In: Royal Society of London. Series B, Containing Papers of a Biological Character. The Royal Society, 1922.

  4. Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168(2):323–331, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Chiu, Y. C., P. W. Arand, S. G. Shroff, T. Feldman, and J. D. Carroll. Determination of pulse wave velocities with computerized algorithms. Am. Heart J. 121(5):1460–1470, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Dogui, A., A. Redheuil, M. Lefort, et al. Measurement of aortic arch pulse wave velocity in cardiovascular MR: comparison of transit time estimators and description of a new approach. J. Magn. Reson. Imaging 33(6):1321–1329, 2011.

    Article  PubMed  Google Scholar 

  7. Fielden, S. W., B. K. Fornwalt, M. Jerosch-Herold, R. L. Eisner, A. E. Stillman, and J. N. Oshinski. A new method for the determination of aortic pulse wave velocity using cross-correlation on 2D PCMR velocity data. J. Magn. Reson. Imaging 27(6):1382–1387, 2008.

    Article  PubMed  Google Scholar 

  8. Gaddum, N. TTAlgorithm. 2012; Available from: http://www.mathworks.co.uk/matlabcentral/fileexchange/37746-ttalgorithm.

  9. Ibrahim, E.-S. H., K. R. Johnson, A. B. Miller, J. M. Shaffer, and R. D. White. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: Comparison of techniques. J. Cardiovasc. Magn. Reson. 12:26, 2010.

    Article  Google Scholar 

  10. Latham, R. D., N. Westerhof, P. Sipkema, B. J. Rubal, P. Reuderink, and J. P. Murgo. Regional wave travel and reflections along the human aorta. Circulation 72(6):1257–1269, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Laurent, S., and P. Boutouyrie. Recent advances in arterial stiffness and wave reflection in human hypertension. Hypertension 49:1202–1206, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Laurent, S., J. Cockcroft, L. Van Bortel, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27:2588–2605, 2006.

    Article  PubMed  Google Scholar 

  13. Lehmann, E. D., K. D. Hopkins, A. Rawesh, et al. Relation between number of cardiovascular risk factors/events and noninvasive Doppler ultrasound assessments of aortic compliance. Hypertension 32(3):565–569, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Malindzak, Jr, G. S. Reflection of pressure pulses in the aorta. Med. Res. Eng. 6(4):25–31, 1967.

    PubMed  Google Scholar 

  15. Matthys, K. S., J. Alastruey, J. Peiró, et al. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40(15):3476–3486, 2007.

    Article  PubMed  Google Scholar 

  16. Mitchell, G. F., M. A. Pfeffer, P. V. Finn, and J. M. Pfeffer. Comparison of techniques for measuring pulse-wave velocity in the rat. J. Appl. Physiol. 82(1):203–210, 1997.

    PubMed  CAS  Google Scholar 

  17. Moens, A. I. Die pulskurve. 1878: Leiden.

  18. Nichols, W. W., M. F. O’Rourke, and C. Vlachopoulos. Mcdonald’s blood flow in arteries. Theoretical, experimental and clinical principles (6th ed.). London: Arnold, 2011.

    Google Scholar 

  19. Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1):H208–H222, 2009.

    Article  PubMed  CAS  Google Scholar 

  20. Todd, B. S., and D. C. Andrews. The identification of peaks in physiological signals. Comput. Biomed. Res. 32:322–335, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Vardoulis, O., T. G. Papaioannou, and N. Stergiopulos. On the estimation of total arterial compliance from aortic pulse wave velocity. Ann. Biomed. Eng. 40(12):2619–2626, 2012.

    Article  PubMed  Google Scholar 

  22. Vlachopoulos, C., K. Aznaouridis, M. F. O’Rourke, M. E. Safar, K. Baou, and C. Stefanadis. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur. Heart J. 31(15):1865–1871, 2010.

    Article  PubMed  Google Scholar 

  23. Zuo, J. L., Y. Li, Z. J. Yan, et al. Validation of the central blood pressure estimation by the sphygmocor system in Chinese. Blood Press. Monit. 15(5):268–274, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Medical Research Council, grant G09000865 (NG), British Heart Foundation (BHF) Intermediate Basic Science Research Fellowship (FS/09/030/27812) and the Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC under Grant No. WT 088641/Z/09/Z (JA). This research was also supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Gaddum.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaddum, N.R., Alastruey, J., Beerbaum, P. et al. A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms. Ann Biomed Eng 41, 2617–2629 (2013). https://doi.org/10.1007/s10439-013-0854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0854-y

Keywords

Navigation