Skip to main content

Advertisement

Log in

A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography-based human airways with minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditions for the 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: \(Nu = 3.504\left( {Re\frac{{D_{\text{a}} }}{{D_{\text{t}} }}} \right)^{0.277} , \quad R = 0.841\) and \(Sh = 3.652\left( {Re\frac{{D_{\text{a}} }}{{D_{\text{t}} }}} \right)^{0.268} , \quad R = 0.825\), where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, D a is the airway equivalent diameter, and \(D_{\text{t}}\) is the tracheal equivalent diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Daviskas, E., I. Gonda, and S. D. Anderson. Mathematical modeling of heat and water transport in human respiratory tract. J. Appl. Physiol. Bethesda MD 1985(69):362–372, 1990.

    Google Scholar 

  2. Ferron, G. A., B. Haider, and W. G. Kreyling. Inhalation of salt aerosol particles—I. Estimation of the temperature and relative humidity of the air in the human upper airways. J. Aerosol Sci. 19:343–363, 1988.

    Article  Google Scholar 

  3. Finlay, W. H. The mechanics of inhaled pharmaceutical aerosols: an introduction. New York: Academic Press, 2001.

    Google Scholar 

  4. Finlay, W. H., and K. W. Stapleton. The effect on regional lung deposition of coupled heat and mass transfer between hygroscopic droplets and their surrounding phase. J. Aerosol Sci. 26:655–670, 1995.

    Article  CAS  Google Scholar 

  5. Hamilton, G. Investigations of the thermal properties of human and animal tissues. Ph.D. thesis, Unversity of Glasgow, 1998.

  6. Hanna, L. M., and P. W. Scherer. Regional control of local airway heat and water vapor losses. J. Appl. Physiol. 61:624–632, 1986.

    CAS  PubMed  Google Scholar 

  7. Ingenito, E. P., J. Solway, E. R. McFadden, Jr., B. M. Pichurko, E. G. Cravalho, and J. M. Drazen. Finite difference analysis of respiratory heat transfer. J. Appl. Physiol. Bethesda MD 1985(61):2252–2259, 1986.

    Google Scholar 

  8. Jahani, N., Y. Yin, E. A. Hoffman, and C.-L. Lin. Assessment of regional non-linear tissue deformation and air volume change of human lungs via image registration. J. Biomech. 2014. doi:10.1016/j.jbiomech.2014.02.040.

    PubMed  Google Scholar 

  9. Javaheri, E., F. M. Shemirani, M. Pichelin, I. M. Katz, G. Caillibotte, R. Vehring, and W. H. Finlay. Deposition modeling of hygroscopic saline aerosols in the human respiratory tract: comparison between air and helium–oxygen as carrier gases. J. Aerosol Sci. 64:81–93, 2013.

    Article  CAS  Google Scholar 

  10. Lin, C.-L., H. Lee, T. Lee, and L. J. Weber. A level set characteristic Galerkin finite element method for free surface flows. Int. J. Numer. Methods Fluids 49:521–547, 2005.

    Article  CAS  Google Scholar 

  11. Lin, C.-L., M. H. Tawhai, and E. A. Hoffman. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. Wiley Interdiscip. Rev. Syst. Biol. Med. 5:643–655, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lin, C.-L., M. H. Tawhai, G. McLennan, and E. A. Hoffman. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157:295–309, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lin, C., M. H. Tawhai, G. McLennan, and E. A. Hoffman. Computational fluid dynamics. IEEE Eng. Med. Biol. Mag. 28:25–33, 2009.

    CAS  PubMed  Google Scholar 

  14. MacIntyre, N. Respiratory Care: Principles and Practice. Sudbury: Jones & Bartlett Learning, 2011.

    Google Scholar 

  15. Martonen, T. B., J. A. Rosati, and K. K. Isaacs. Modeling deposition of inhaled particles. In: Aerosols Handbook: Measurement, Dosimetry, and Health Effects, edited by L. S. Ruzer, and N. H. Harley. Boca Raton: CRC Press, 2013, pp. 113–155.

    Google Scholar 

  16. McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans. J. Appl. Physiol. 58:564–570, 1985.

    Article  PubMed  Google Scholar 

  17. Morvay, Z., and D. Gvozdenac. Applied Industrial Energy and Environmental Management. New York: Wiley, 2008.

    Book  Google Scholar 

  18. Nellis, G., and S. Klein. Heat Transfer. Cambridge: Cambridge University Press, 2009.

    Google Scholar 

  19. Primiano, F. P., G. M. Saidel, F. W. Montague, K. L. Kruse, C. G. Green, and J. G. Horowitz. Water vapour and temperature dynamics in the upper airways of normal and CF subjects. Eur. Respir. J. 1:407–414, 1988.

    PubMed  Google Scholar 

  20. Tawhai, M. H., and P. J. Hunter. Modeling water vapor and heat transfer in the normal and the intubated airways. Ann. Biomed. Eng. 32:609–622, 2004.

    Article  PubMed  Google Scholar 

  21. Tsu, M. E., A. L. Babb, D. D. Ralph, and M. P. Hlastala. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study. Ann. Biomed. Eng. 16:547–571, 1988.

    Article  CAS  PubMed  Google Scholar 

  22. Venegas, J. G., T. Winkler, G. Musch, M. F. Vidal Melo, D. Layfield, N. Tgavalekos, A. J. Fischman, R. J. Callahan, G. Bellani, and R. Scott Harris. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434:777–782, 2005.

    Article  CAS  PubMed  Google Scholar 

  23. Vreman, A. W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16:3670, 2004.

    Article  CAS  Google Scholar 

  24. Warren, N. J., E. J. Crampin, and M. H. Tawhai. The role of airway epithelium in replenishment of evaporated airway surface liquid from the human conducting airways. Ann. Biomed. Eng. 38:3535–3549, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. Weiler, J. M., S. D. Anderson, C. Randolph, S. Bonini, T. J. Craig, D. S. Pearlman, K. W. Rundell, W. S. Silvers, W. W. Storms, D. I. Bernstein, J. Blessing-Moore, L. Cox, D. A. Khan, D. M. Lang, R. A. Nicklas, J. Oppenheimer, J. M. Portnoy, D. E. Schuller, S. L. Spector, S. A. Tilles, D. Wallace, W. Henderson, L. Schwartz, D. Kaufman, T. Nsouli, L. Schieken, and N. Rosario. Pathogenesis, prevalence, diagnosis, and management of exercise-induced bronchoconstriction: a practice parameter. Ann. Allergy Asthma Immunol. 105:S1–S47, 2010.

    Article  PubMed  Google Scholar 

  26. Widdicombe, J. Regulation of the depth and composition of airway surface liquid. J. Anat. 201:313–318, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yin, Y., J. Choi, E. A. Hoffman, M. H. Tawhai, and C.-L. Lin. Simulation of pulmonary air flow with a subject-specific boundary condition. J. Biomech. 43:2159–2163, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Yin, Y., J. Choi, E. A. Hoffman, M. H. Tawhai, and C.-L. Lin. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. J. Comput. Phys. 244:168–192, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zhang, Z., and C. Kleinstreuer. Species heat and mass transfer in a human upper airway model. Int. J. Heat Mass Transf. 46:4755–4768, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421, and MBIE Grant 20959-NMTS-UOA. We also thank SDSC, TACC, and XSEDE for the computer time.

Conflicts of interest

E. A. Hoffman is a shareholder in VIDA diagnostics, which is commercializing lung image analysis software derived from the University of Iowa lung imaging group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Long Lin.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Tawhai, M.H., Hoffman, E.A. et al. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models. Ann Biomed Eng 42, 2117–2131 (2014). https://doi.org/10.1007/s10439-014-1074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1074-9

Keywords

Navigation