Skip to main content
Log in

Computational Mitral Valve Evaluation and Potential Clinical Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mitral valve (MV) apparatus consists of the two asymmetric leaflets, the saddle-shaped annulus, the chordae tendineae, and the papillary muscles. MV function over the cardiac cycle involves complex interaction between the MV apparatus components for efficient blood circulation. Common diseases of the MV include valvular stenosis, regurgitation, and prolapse. MV repair is the most popular and most reliable surgical treatment for early MV pathology. One of the unsolved problems in MV repair is to predict the optimal repair strategy for each patient. Although experimental studies have provided valuable information to improve repair techniques, computational simulations are increasingly playing an important role in understanding the complex MV dynamics, particularly with the availability of patient-specific real-time imaging modalities. This work presents a review of computational simulation studies of MV function employing finite element structural analysis and fluid–structure interaction approach reported in the literature to date. More recent studies towards potential applications of computational simulation approaches in the assessment of valvular repair techniques and potential pre-surgical planning of repair strategies are also discussed. It is anticipated that further advancements in computational techniques combined with the next generations of clinical imaging modalities will enable physiologically more realistic simulations. Such advancement in imaging and computation will allow for patient-specific, disease-specific, and case-specific MV evaluation and virtual prediction of MV repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aarts, P. A., P. Steendijk, J. J. Sixma, and R. M. Heethaar. Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J. Biomech. 19(10):799–805, 1986.

    Article  CAS  PubMed  Google Scholar 

  2. Acar, C., A. Farge, A. Ramsheyi, J. C. Chachques, S. Mihaileanu, R. Gouezo, J. Gerota, and A. F. Carpentier. Mitral valve replacement using a cryopreserved mitral homograft. Ann. Thorac. Surg. 57(3):746–748, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed, S., N. C. Nanda, A. P. Miller, R. Nekkanti, A. M. Yousif, A. D. Pacifico, J. K. Kirklin, and D. C. McGiffin. Usefulness of transesophageal three-dimensional echocardiography in the identification of individual segment/scallop prolapse of the mitral valve. Echocardiography 20(2):203–209, 2003.

    Article  PubMed  Google Scholar 

  4. Alfieri, O., F. Maisano, M. De Bonis, P. L. Stefano, L. Torracca, M. Oppizzi, and G. La Canna. The double-orifice technique in mitral valve repair: a simple solution for complex problems. J. Thorac. Cardiovasc. Surg. 122(4):674–681, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Argenziano, M., E. Skipper, D. Heimansohn, G. V. Letsou, Y. J. Woo, I. Kron, J. Alexander, J. Cleveland, B. Kong, M. Davidson, T. Vassiliades, K. Krieger, E. Sako, P. Tibi, A. Galloway, E. Foster, T. Feldman, D. Glower, and E. Investigators. Surgical revision after percutaneous mitral repair with the MitraClip device. Ann. Thorac. Surg. 89(1):72–80; discussion p. 80, 2010.

  6. Avanzini, A. A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J. Biomech. Eng. 130(3):031015, 2008.

    Article  PubMed  Google Scholar 

  7. Barlow, J. B., and M. J. Antunes. Functional anatomy of the mitral valve. In: Perspectives on the Mitral Valve, edited by J. B. Barlow. Philadelphia: F. A. Davis Company, 1987, pp. 1–14.

    Google Scholar 

  8. Bhudia, S. K., P. M. McCarthy, N. G. Smedira, B. K. Lam, J. Rajeswaran, and E. H. Blackstone. Edge-to-edge (Alfieri) mitral repair: results in diverse clinical settings. Ann. Thorac. Surg. 77(5):1598–1606, 2004.

    Article  PubMed  Google Scholar 

  9. Binder, T. M., R. Rosenhek, G. Porenta, G. Maurer, and H. Baumgartner. Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 36(4):1355–1361, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Bortolotti, U., A. D. Milano, and R. W. Frater. Mitral valve repair with artificial chordae: a review of its history, technical details, long-term results, and pathology. Ann. Thorac. Surg. 93(2):684–691, 2012.

    Article  PubMed  Google Scholar 

  11. Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Goktepe, J. C. Swanson, S. Farahmandnia, N. B. Ingels, Jr., and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124(11 Suppl):S81–S96, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bothe, W., D. C. Miller, and T. Doenst. Sizing for mitral annuloplasty: where does science stop and voodoo begin? Ann. Thorac. Surg. 95(4):1475–1483, 2013.

    Article  PubMed  Google Scholar 

  13. Braunberger, E., A. Deloche, A. Berrebi, F. Abdallah, J. A. Celestin, P. Meimoun, G. Chatellier, S. Chauvaud, J. N. Fabiani, and A. Carpentier. Very long-term results (more than 20 years) of valve repair with carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation 104(12 Suppl 1):I8–I11, 2001.

    CAS  PubMed  Google Scholar 

  14. Butany, J., M. J. Collins, and T. E. David. Ruptured synthetic expanded polytetrafluoroethylene chordae tendinae. Cardiovasc. Pathol. 13(3):182–184, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s Reconstructive Valve Surgery. Elsevier Health Sciences, p. 368, 2011.

  16. Carpentier, A., J. Relland, A. Deloche, J. N. Fabiani, C. D’Allaines, P. Blondeau, A. Piwnica, S. Chauvaud, and C. Dubost. Conservative management of the prolapsed mitral valve. Ann. Thorac. Surg. 26(4):294–302, 1978.

    Article  CAS  PubMed  Google Scholar 

  17. Chandran, K. B., S. E. Rittgers, and A. P. Yoganathan. Biofluid Mechanics: The Human Circulation. Boca Raton: CRC/Taylor & Francis, p. 419, 2007.

    Google Scholar 

  18. Chandran, K. B., H. S. Udaykumar, and J. Reinhardt (eds.). Image-Based Computational Modeling of the Circulatory and Pulmonary Systems. New York: Springer Science + Business Media, p. 465, 2011.

    Google Scholar 

  19. Chandran, K. B., and S. C. Vigmostad. Patient-specific bicuspid valve dynamics: overview of methods and challenges. J. Biomech. 46(2):208–216, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Chang, B. C., Y. N. Youn, J. W. Ha, S. H. Lim, Y. S. Hong, and N. Chung. Long-term clinical results of mitral valvuloplasty using flexible and rigid rings: a prospective and randomized study. J. Thorac. Cardiovasc. Surg. 133(4):995–1003, 2007.

    Article  PubMed  Google Scholar 

  21. Chaput, M., M. D. Handschumacher, F. Tournoux, L. Hua, J. L. Guerrero, G. J. Vlahakes, and R. A. Levine. Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118(8):845–852, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Choi, A., Y. Rim, J. S. Mun, and H. Kim. A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Biomed. Mater. Eng. 24(1):341–347, 2014.

    PubMed Central  PubMed  Google Scholar 

  23. Cleveland Clinic. www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/cardiology/mitral-valve-disease/. Accessed 26 Mar 2014.

  24. Cohn, L. H., G. S. Couper, S. F. Aranki, R. J. Rizzo, N. M. Kinchla, and J. J. Collins, Jr. Long-term results of mitral valve reconstruction for regurgitation of the myxomatous mitral valve. J. Thorac. Cardiovasc. Surg. 107(1):143–150; discussion 150–141, 1994.

  25. Correale, M., R. Ieva, and M. Di Biase. Real-time three-dimensional echocardiography: an update. Eur. J. Intern. Med. 19(4):241–248, 2008.

    Article  PubMed  Google Scholar 

  26. Dal Pan, F., G. Donzella, C. Fucci, and D. Schreiber. Structural effects of an innovative surgical technique to repair heart valve defects. J. Biomech. 38(12):2460–2471, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. David, T. E., J. Ivanov, S. Armstrong, and H. Rakowski. Late outcomes of mitral valve repair for floppy valves: implications for asymptomatic patients. J. Thorac. Cardiovasc. Surg. 125(5):1143–1152, 2003.

    Article  PubMed  Google Scholar 

  28. David, T. E., A. Omran, S. Armstrong, Z. Sun, and J. Ivanov. Long-term results of mitral valve repair for myxomatous disease with and without chordal replacement with expanded polytetrafluoroethylene sutures. J. Thorac. Cardiovasc. Surg. 115(6):1279–1285; discussion 1285–1276, 1998.

  29. De Hart, J., F. P. Baaijens, G. W. Peters, and P. J. Schreurs. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36(5):699–712, 2003.

    Article  PubMed  Google Scholar 

  30. Einstein, D. R., F. Del Pin, X. Jiao, A. P. Kuprat, J. P. Carson, K. S. Kunzelman, R. P. Cochran, J. M. Guccione, and M. B. Ratcliffe. Fluid–structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int. J. Numer. Methods Eng. 26(3–4):348–380, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ennis, D. B., T. C. Nguyen, A. Itoh, W. Bothe, D. H. Liang, N. B. Ingels, and D. C. Miller. Reduced systolic torsion in chronic “pure” mitral regurgitation. Circ. Cardiovasc. Imaging. 2(2):85–92, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Fedak, P. W., P. M. McCarthy, and R. O. Bonow. Evolving concepts and technologies in mitral valve repair. Circulation 117(7):963–974, 2008.

    Article  PubMed  Google Scholar 

  33. Feldman, T., S. Kar, M. Rinaldi, P. Fail, J. Hermiller, R. Smalling, P. L. Whitlow, W. Gray, R. Low, H. C. Herrmann, S. Lim, E. Foster, D. Glower, and E. Investigators. Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J. Am. Coll. Cardiol. 54(8):686–694, 2009.

    Article  PubMed  Google Scholar 

  34. Flachskampf, F. A., S. Chandra, A. Gaddipatti, R. A. Levine, A. E. Weyman, W. Ameling, P. Hanrath, and J. D. Thomas. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J. Am. Soc. Echocardiogr. 13:277–287, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Gabbay, U., and C. Yosefy. The underlying causes of chordae tendinae rupture: a systematic review. Int. J. Cardiol. 143(2):113–118, 2010.

    Article  PubMed  Google Scholar 

  36. George, K. M., T. Mihaljevic, and A. M. Gillinov. Triangular resection for posterior mitral prolapse: rationale for a simpler repair. J. Heart Valve Dis. 18(1):119–121, 2009.

    PubMed  Google Scholar 

  37. Gillinov, A. M., and D. M. Cosgrove. Minimally invasive mitral valve surgery: mini-sternotomy with extended transseptal approach. Semin. Thorac. Cardiovasc. Surg. 11(3):206–211, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Gillinov, A. M., D. M. Cosgrove, E. H. Blackstone, R. Diaz, J. H. Arnold, B. W. Lytle, N. G. Smedira, J. F. Sabik, P. M. McCarthy, and F. D. Loop. Durability of mitral valve repair for degenerative disease. J. Thorac. Cardiovasc. Surg. 116(5):734–743, 1998.

    Article  CAS  PubMed  Google Scholar 

  39. Glower, D. D. Surgical approaches to mitral regurgitation. J. Am. Coll. Cardiol. 60(15):1315–1322, 2012.

    Article  PubMed  Google Scholar 

  40. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, 3rd, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, American Heart Association Statistics, and Stroke Statistics. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292, 2014.

    Article  PubMed  Google Scholar 

  41. Hayek, E., C. N. Gring, and B. P. Griffin. Mitral valve prolapse. Lancet 365(9458):507–518, 2005.

    Article  PubMed  Google Scholar 

  42. Ho, S. Y. Anatomy of the mitral valve. Heart 88(Suppl 4): iv; 5–10, 2002.

  43. Hung, J., R. Lang, F. Flachskampf, S. K. Shernan, M. L. McCulloch, D. B. Adams, J. Thomas, M. Vannan, and T. Ryan. 3D echocardiography: a review of the current status and future directions. J. Am. Soc. Echocardiogr. 20(3):213–233, 2007.

    Article  PubMed  Google Scholar 

  44. Itoh, A., D. B. Ennis, W. Bothe, J. C. Swanson, G. Krishnamurthy, T. C. Nguyen, N. B. Ingels, Jr., and D. C. Miller. Mitral annular hinge motion contribution to changes in mitral septal-lateral dimension and annular area. J. Thorac. Cardiovasc. Surg. 138(5):1090–1099, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Jassar, A. S., C. J. Brinster, M. Vergnat, J. D. Robb, T. J. Eperjesi, A. M. Pouch, A. T. Cheung, S. J. Weiss, M. A. Acker, J. H. Gorman, 3rd, R. C. Gorman, and B. M. Jackson. Quantitative mitral valve modeling using real-time three-dimensional echocardiography: technique and repeatability. Ann. Thorac. Surg. 91(1):165–171, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kaji, S., M. Nasu, A. Yamamuro, K. Tanabe, K. Nagai, T. Tani, K. Tamita, K. Shiratori, M. Kinoshita, M. Senda, Y. Okada, and S. Morioka. Annular geometry in patients with chronic ischemic mitral regurgitation: three-dimensional magnetic resonance imaging study. Circulation 112(9 Suppl):I409–I414, 2005.

    PubMed  Google Scholar 

  47. Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139(3):378–387, 2000.

    Article  CAS  PubMed  Google Scholar 

  48. Karlsson, M. O., J. R. Glasson, A. F. Bolger, G. T. Daughters, M. Komeda, L. E. Foppiano, D. C. Miller, and N. B. Ingels, Jr. Mitral valve opening in the ovine heart. Am. J. Physiol. 274(2 Pt 2):H552–H563, 1998.

    CAS  PubMed  Google Scholar 

  49. Kay, G. L., A. Aoki, P. Zubiate, C. A. Prejean, Jr., J. M. Ruggio, and J. H. Kay. Probability of valve repair for pure mitral regurgitation. J. Thorac. Cardiovasc. Surg. 108(5):871–879, 1994.

    CAS  PubMed  Google Scholar 

  50. Kim, H., K. B. Chandran, M. S. Sacks, and J. Lu. An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann. Biomed. Eng. 35(1):30–44, 2007.

    Article  PubMed  Google Scholar 

  51. Kim, H., J. Lu, and K. B. Chandran. Native human and bioprosthetic heart valve dynamics. In: Image-based Computational Modeling of the Human Circulatory and Pulmonary Systems, edited by K. B. Chandran, H. S. Udaykumar, and J. Reinhardt. New York: Springer Science + Business Media, 2011, pp. 403–435.

  52. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation pericardial bioprosthetic heart valve function. J. Biomech. Eng. 128(5):717–724, 2006.

    Article  PubMed  Google Scholar 

  53. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008.

    Article  PubMed  Google Scholar 

  54. Kunzelman, K. S., R. P. Cochran, C. Chuong, W. S. Ring, E. D. Verrier, and R. D. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3):326–340, 1993.

    CAS  PubMed  Google Scholar 

  55. Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B 362(1484):1393–1406, 2007.

    Article  CAS  Google Scholar 

  56. Kunzelman, K. S., D. W. Quick, and R. P. Cochran. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann. Thorac. Surg. 66(6 Suppl):S198–S205, 1998.

    Article  CAS  PubMed  Google Scholar 

  57. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5(4):427–434, 1997.

    Article  CAS  PubMed  Google Scholar 

  58. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7(1):108–116, 1998.

    CAS  PubMed  Google Scholar 

  59. Kunzelman, K., M. S. Reimink, E. D. Verrier, and R. P. Cochran. Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study. J. Card. Surg. 11(2):136–145; discussion 146, 1996.

  60. Lancellotti, P., L. Moura, L. A. Pierard, E. Agricola, B. A. Popescu, C. Tribouilloy, A. Hagendorff, J. L. Monin, L. Badano, and J. L. Zamorano. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur. J. Echocardiogr. 11(4):307–332, 2010.

    Article  PubMed  Google Scholar 

  61. Lawrie, G. M. Mitral valve repair vs replacement. Current recommendations and long-term results. Cardiol. Clin. 16(3):437–448, 1998.

    Article  CAS  PubMed  Google Scholar 

  62. Lawrie, G. M. Mitral valve: toward complete repairability. Surg. Technol. Int. 15:189–197, 2006.

    PubMed  Google Scholar 

  63. Lawrie, G. M., E. A. Earle, and N. Earle. Intermediate-term results of a nonresectional dynamic repair technique in 662 patients with mitral valve prolapse and mitral regurgitation. J. Thorac. Cardiovasc. Surg. 141(2):368–376, 2011.

    Article  PubMed  Google Scholar 

  64. Lim, K. H., J. H. Yeo, and C. M. Duran. Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries. J. Heart Valve Dis. 14(3):386–392, 2005.

    PubMed  Google Scholar 

  65. Maisano, F., A. Redaelli, M. Soncini, E. Votta, L. Arcobasso, and O. Alfieri. An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Ann. Thorac. Surg. 79(4):1268–1275, 2005.

    Article  PubMed  Google Scholar 

  66. Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue, M. Hackl, R. I. Ionasec, T. Noack, J. Seeburger, and D. Comaniciu. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16(7):1330–1346, 2012.

    Article  PubMed  Google Scholar 

  67. Marron, K., M. H. Yacoub, J. M. Polak, M. N. Sheppard, D. Fagan, B. F. Whitehead, M. R. de Leval, R. H. Anderson, and J. Wharton. Innervation of human atrioventricular and arterial valves. Circulation 94(3):368–375, 1996.

    Article  CAS  PubMed  Google Scholar 

  68. Mohty, D., T. A. Orszulak, H. V. Schaff, J. F. Avierinos, J. A. Tajik, and M. Enriquez-Sarano. Very long-term survival and durability of mitral valve repair for mitral valve prolapse. Circulation 104(12 Suppl 1):I1–I7, 2001.

    CAS  PubMed  Google Scholar 

  69. Mousel, J., V. Govindarajan, H. S. Udaykumar, and K. B. Chandran. Investigation of physiologic flow-structure evolution in mechanical valve closure. In: World Congress of Biomechanics W168, 2014.

  70. Pouch, A. M., C. Xu, P. A. Yushkevich, A. S. Jassar, M. Vergnat, J. H. Gorman, 3rd, R. C. Gorman, C. M. Sehgal, and B. M. Jackson. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J. Biomech. 45(5):903–907, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Pouch, A. M., P. A. Yushkevich, B. M. Jackson, A. S. Jassar, M. Vergnat, J. H. Gorman, R. C. Gorman, and C. M. Sehgal. Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound. Med. Phys. 39(2):933–950, 2012.

    Article  PubMed  Google Scholar 

  72. Prot, V., R. Haaverstad, and B. Skallerud. Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech. Model. Mechanobiol. 8(1):43–55, 2009.

    Article  CAS  PubMed  Google Scholar 

  73. Rabbah, J. P., N. Saikrishnan, and A. P. Yoganathan. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41(2):305–315, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Reimink, M. S., K. S. Kunzelman, and R. P. Cochran. The effect of chordal replacement suture length on function and stresses in repaired mitral valves: a finite element study. J. Heart Valve Dis. 5(4):365–375, 1996.

    CAS  PubMed  Google Scholar 

  75. Reimink, M. S., K. S. Kunzelman, E. D. Verrier, and R. P. Cochran. The effect of anterior chordal replacement on mitral valve function and stresses. A finite element study. ASAIO J. 41(3):M754–M762, 1995.

    CAS  Google Scholar 

  76. Reul, H., N. Talukder, and E. W. Muller. Fluid mechanics of the natural mitral valve. J. Biomech. 14(5):361–372, 1981.

    Article  CAS  PubMed  Google Scholar 

  77. Rim, Y., S. T. Laing, P. Kee, D. D. McPherson, and H. Kim. Evaluation of mitral valve dynamics. JACC Cardiovasc. Imaging. 6(2):263–268, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Rim, Y., S. T. Laing, D. D. McPherson, and H. Kim. Mitral valve repair using ePTFE sutures for ruptured mitral chordae tendineae: a computational simulation study. Ann. Biomed. Eng. 42(1):139–148, 2014.

    Article  PubMed  Google Scholar 

  79. Rim, Y., D. D. McPherson, K. B. Chandran, and H. Kim. The effect of patient-specific annular motion on dynamic simulation of mitral valve function. J. Biomech. 46(6):1104–1112, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Ryan, L. P., B. M. Jackson, T. J. Eperjesi, T. J. Plappert, M. St John-Sutton, R. C. Gorman, and J. H. Gorman, 3rd. A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 136(3):726–734, 2008.

    Article  PubMed  Google Scholar 

  81. Sakamoto, Y., K. Hashimoto, H. Okuyama, S. Ishii, M. Hanai, T. Inoue, G. Shinohara, K. Morita, and H. Kurosawa. Long-term assessment of mitral valve reconstruction with resection of the leaflets: triangular and quadrangular resection. Ann. Thorac. Surg. 79(2):475–479, 2005.

    Article  PubMed  Google Scholar 

  82. Salgo, I. S., J. H. Gorman, 3rd, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, and L. H. Edmunds Jr. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002.

    Article  PubMed  Google Scholar 

  83. Schwalm, S. A., L. Sugeng, J. Raman, V. Jeevanandum, and R. M. Lang. Assessment of mitral valve leaflet perforation as a result of infective endocarditis by 3-dimensional real-time echocardiography. J. Am. Soc. Echocardiogr. 17(8):919–922, 2004.

    Article  PubMed  Google Scholar 

  84. Shi, L., and Z. He. Hemodynamics of the mitral valve under edge-to-edge repair: an in vitro steady flow study. J. Biomech. Eng. 131(5):051010, 2009.

    Article  PubMed  Google Scholar 

  85. Skallerud, B., V. Prot, and I. S. Nordrum. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech. Model. Mechanobiol. 10(1):11–26, 2011.

    Article  CAS  PubMed  Google Scholar 

  86. Spoor, M. T., A. Geltz, and S. F. Bolling. Flexible versus nonflexible mitral valve rings for congestive heart failure: differential durability of repair. Circulation 114(1 Suppl):I67–I71, 2006.

    PubMed  Google Scholar 

  87. Stevanella, M., F. Maffessanti, C. A. Conti, E. Votta, A. Arnoldi, M. Lombardi, O. Parodi, E. G. Caiani, and A. Redaelli. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2(2):66–76, 2011.

    Article  Google Scholar 

  88. Tamburino, C., G. P. Ussia, F. Maisano, D. Capodanno, G. La Canna, S. Scandura, A. Colombo, A. Giacomini, I. Michev, S. Mangiafico, V. Cammalleri, M. Barbanti, and O. Alfieri. Percutaneous mitral valve repair with the MitraClip system: acute results from a real world setting. Eur. Heart J. 31(11):1382–1389, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Timek, T. A., and D. C. Miller. Experimental and clinical assessment of mitral annular area and dynamics: what are we actually measuring? Ann. Thorac. Surg. 72(3):966–974, 2001.

    Article  CAS  PubMed  Google Scholar 

  90. Verhey, J. F., N. S. Nathan, O. Rienhoff, R. Kikinis, F. Rakebrandt, and M. N. D’Ambra. Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomed. Eng. Online 5:17, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Vigmostad, S. C., and H. S. Udaykumar. Algorithms for fluid–structure interaction. In: Image-based computational modeling of the human circulatory and pulmonary systems, edited by K. B. Chandran, H. S. Udaykumar, and J. Reinhardt. New York: Springer Science + Business Media, 2011, pp. 191–234.

    Google Scholar 

  92. Vigmostad, S., H. S. Udaykumar, J. Lu, and K. B. Chandran. Fluid–structure interaction methods in biological flows with specific emphasis on heart valve dynamics. Int. J. Numer. Methods Biomed. Eng. 26:435–26470, 2010.

    Article  Google Scholar 

  93. Votta, E., E. Caiani, F. Veronesi, M. Soncini, F. M. Montevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. Ser. A 366(1879):3411–3434, 2008.

    Article  Google Scholar 

  94. Votta, E., T. B. Le, M. Stevanella, L. Fusini, E. G. Caiani, A. Redaelli, and F. Sotiropoulos. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46(2):217–228, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. M. Montevecchi, and A. Redaelli. The Geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84(1):92–101, 2007.

    Article  PubMed  Google Scholar 

  96. Votta, E., F. Maisano, M. Soncini, A. Redaelli, F. M. Montevecchi, and O. Alfieri. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J. Heart Valve Dis. 11(6):810–822, 2002.

    PubMed  Google Scholar 

  97. Wang, Q., and W. Sun. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1):142–153, 2013.

    Article  PubMed  Google Scholar 

  98. Wong, V. M., J. F. Wenk, Z. Zhang, G. Cheng, G. Acevedo-Bolton, M. Burger, D. A. Saloner, A. W. Wallace, J. M. Guccione, M. B. Ratcliffe, and L. Ge. The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann. Thorac. Surg. 93(3):776–782, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Xie, M. X., X. F. Wang, T. O. Cheng, J. Wang, and Q. Lu. Comparison of accuracy of mitral valve area in mitral stenosis by real-time, three-dimensional echocardiography versus two-dimensional echocardiography versus Doppler pressure half-time. Am. J. Cardiol. 95(12):1496–1499, 2005.

    Article  PubMed  Google Scholar 

  100. Xu, C., A. S. Jassar, D. P. Nathan, T. J. Eperjesi, C. J. Brinster, M. M. Levack, M. Vergnat, R. C. Gorman, J. H. Gorman, 3rd, and B. M. Jackson. Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation. Ann. Thorac. Surg. 93(4):1141–1145, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Zamorano, J., P. Cordeiro, L. Sugeng, L. de Perez Isla, L. Weinert, C. Macaya, E. Rodriguez, and R. M. Lang. Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J. Am. Coll. Cardiol. 43(11):2091–2096, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the National Institutes of Health (R01 HL109597). The authors thank Drs. Vijay Govindarajan and John Mousel for providing supportive material and preliminary FSI simulation results of MV function.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunggun Kim.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, K.B., Kim, H. Computational Mitral Valve Evaluation and Potential Clinical Applications. Ann Biomed Eng 43, 1348–1362 (2015). https://doi.org/10.1007/s10439-014-1094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1094-5

Keywords

Navigation