Skip to main content

Advertisement

Log in

Bridge-Enhanced ACL Repair: A Review of the Science and the Pathway Through FDA Investigational Device Approval

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Injuries to the anterior cruciate ligament (ACL) are currently treated with replacement of the torn ligament with a graft of tendon harvested from elsewhere in the knee. This procedure, called “ACL reconstruction,” is excellent for restoring gross stability to the knee; however, there are relatively high graft failure rates in adolescent patients (Barber et al. in Arthroscopy 30(4):483–491, 2014; Engelman et al. in Am J Sports Med, 2014; Webster et al. in Am J Sports Med 42(3):641–647, 2014), and the ACL reconstruction procedure does not prevent the premature osteoarthritis seen in patients after an ACL injury (Ajuied et al. in Am J Sports Med, 2013; Song et al. in J Sports Med 41(10):2340–2346, 2013; Tourville et al. Am J Sports Med 41(4):769–778, 2013) .Thus, new solutions are needed for ACL injuries. Researchers have been investigating the use of scaffolds, growth factors and cells to supplement a suture repair of the ACL (bridge-enhanced repair; also called bio-enhanced repair in prior publications). In this paper, we will review the varied approaches which have been investigated for stimulating ACL healing and repair in preclinical models and how one of these technologies was able to move from promising preclinical results to FDA acceptance of an investigational device exemption application for a first-in-human study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ajuied A., F. Wong, C. Smith, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 42(9):2242–2252, 2013.

  2. Altman, G. H., R. L. Horan, I. Martin, et al. Cell differentiation by mechanical stress. FASEB J. 16(2):270–272, 2002.

    CAS  PubMed  Google Scholar 

  3. Andriacchi, T. P., P. L. Briant, S. L. Bevill, and S. Koo. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin. Orthop. Relat. Res. 442:39–44, 2006.

    Article  PubMed  Google Scholar 

  4. Barber, F. A., C. H. Cowden, 3rd, and E. J. Sanders. Revision rates after anterior cruciate ligament reconstruction using bone-patellar tendon-bone allograft or autograft in a population 25 years old and younger. Arthroscopy. 30(4):483–491, 2014.

    Article  PubMed  Google Scholar 

  5. Bellincampi, L. D., R. F. Closkey, R. Prasad, J. P. Zawadsky, and M. G. Dunn. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J. Orthop. Res. 16(4):414–420, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Beynnon, B. D., R. J. Johnson, S. Naud, et al. Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind investigation evaluating knee joint laxity using roentgen stereophotogrammetric analysis. Am. J. Sports Med. 39(12):2536–2548, 2011.

    Article  PubMed  Google Scholar 

  7. Boguszewski, D. V., J. T. Shearn, C. T. Wagner, and D. L. Butler. Investigating the effects of anterior tibial translation on anterior knee force in the porcine model: is the porcine knee ACL dependent? J. Orthop. Res. 29(5):641–646, 2011.

    Article  PubMed  Google Scholar 

  8. Byun, S., M. D. Tortorella, A. M. Malfait, K. Fok, E. H. Frank, and A. J. Grodzinsky. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch. Biochem. Biophys. 499(1–2):32–39, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Deie, M., T. Marui, C. R. Allen, et al. The effects of age on rabbit MCL fibroblast matrix synthesis in response to TGF-beta 1 or EGF. Mech. Ageing Dev. 97(2):121–130, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. DesRosiers, E. A., L. Yahia, and C. H. Rivard. Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J. Orthop. Res. 14(2):200–208, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Dunn, M. G., J. B. Liesch, M. L. Tiku, and J. P. Zawadsky. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J. Biomed. Mater. Res. 29(11):1363–1371, 1995.

    Article  CAS  PubMed  Google Scholar 

  12. Engelman, G. H., P. M. Carry, K. G. Hitt, J. D. Polousky, A. F. Vidal. Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med. 42(10):2311–2318, 2014.

  13. Evans, C. H. Novel biological approaches to the intra-articular treatment of osteoarthritis. BioDrugs. 19(6):355–362, 2005.

    Article  CAS  PubMed  Google Scholar 

  14. Fan, H., H. Liu, S. L. Toh, and J. C. Goh. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 30(28):4967–4977, 2009.

    Article  CAS  PubMed  Google Scholar 

  15. Fan, H., H. Liu, E. J. Wong, S. L. Toh, and J. C. Goh. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 29(23):3324–3337, 2008.

    Article  CAS  PubMed  Google Scholar 

  16. Fleming, B. C., K. P. Spindler, M. P. Palmer, E. M. Magarian, and M. M. Murray. Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am. J. Sports Med. 37(8):1554–1563, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Frank, S., M. Madlener, and S. Werner. Transforming growth factors beta1, beta2, and beta3 and their receptors are differentially regulated during normal and impaired wound healing. J. Biol. Chem. 271(17):10188–10193, 1996.

    Article  CAS  PubMed  Google Scholar 

  18. Harrison, S., P. Vavken, S. Kevy, M. Jacobson, D. Zurakowski, and M. M. Murray. Platelet activation by collagen provides sustained release of anabolic cytokines. Am. J. Sports Med. 39(4):729–734, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Harrold, A. J. Fibrinogenolysis in joints. Nature. 186:1057, 1960.

    Article  CAS  PubMed  Google Scholar 

  20. Haslauer, C. M., K. A. Elsaid, B. C. Fleming, B. L. Proffen, V. M. Johnson, and M. M. Murray. Loss of extracellular matrix from articular cartilage is mediated by the synovium and ligament after anterior cruciate ligament injury. Osteoarthr. Cartil. 21(12):1950–1957, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hecker, W., D. Witthauer, and A. Staerk. Validation of dry heat inactivation of bacterial endotoxins. PDA J. Pharm. Sci. Technol. 48(4):197–204, 1994.

    CAS  PubMed  Google Scholar 

  22. Hee, C. K., J. S. Dines, D. M. Dines, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am. J. Sports Med. 39(8):1630–1639, 2011.

    Article  PubMed  Google Scholar 

  23. Hildebrand, K. A., S. L. Woo, D. W. Smith, et al. The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am. J. Sports Med. 26(4):549–554, 1998.

    CAS  PubMed  Google Scholar 

  24. Huang, D., T. R. Chang, A. Aggarwal, R. C. Lee, and H. P. Ehrlich. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21(3):289–305, 1993.

    Article  CAS  PubMed  Google Scholar 

  25. Kaux, J. F., L. Janssen, P. Drion, et al. Vascular Endothelial Growth Factor-111 (VEGF-111) and tendon healing: preliminary results in a rat model of tendon injury. Muscles Ligaments Tendons J. 4(1):24–28, 2014.

    PubMed Central  PubMed  Google Scholar 

  26. Kobayashi, D., M. Kurosaka, S. Yoshiya, and K. Mizuno. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 5(3):189–194, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Kroon, M. E., M. L. van Schie, B. van der Vecht, V. W. van Hinsbergh, and P. Koolwijk. Collagen type 1 retards tube formation by human microvascular endothelial cells in a fibrin matrix. Angiogenesis. 5(4):257–265, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Letson, A. K., and L. E. Dahners. The effect of combinations of growth factors on ligament healing. Clin. Orthop. Relat. Res. 308:207–212, 1994.

    PubMed  Google Scholar 

  29. Lippross, S., B. Moeller, H. Haas, et al. Intraarticular injection of platelet-rich plasma reduces inflammation in a pig model of rheumatoid arthritis of the knee joint. Arthritis Rheumatol. 63(11):3344–3353, 2011.

    Article  CAS  Google Scholar 

  30. Lohmander, L. S., S. Hellot, D. Dreher, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 66(7):1820–1831, 2014.

    Article  CAS  PubMed  Google Scholar 

  31. Marui, T., C. Niyibizi, H. I. Georgescu, et al. Effect of growth factors on matrix synthesis by ligament fibroblasts. J. Orthop. Res. 15(1):18–23, 1997.

    Article  CAS  PubMed  Google Scholar 

  32. Meaney Murray, M., K. Rice, R. J. Wright, and M. Spector. The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J. Orthop. Res. 21(2):238–244, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Mueller, X. M., H. T. Tevaearai, D. Jegger, O. Tucker, and L. K. von Segesser. Are standard human coagulation tests suitable in pigs and calves during extracorporeal circulation? Artif. Organs. 25(7):579–584, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Murray, M. M., and B. C. Fleming. Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes posttraumatic osteoarthritis after surgery. Am. J. Sports Med. 41(8):1762–1770, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Murray, M. M., K. P. Spindler, E. Abreu, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J. Orthop. Res. 25(1):81–91, 2007.

    Article  PubMed  Google Scholar 

  36. Murray, M. M., K. P. Spindler, P. Ballard, T. P. Welch, D. Zurakowski, and L. B. Nanney. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J. Orthop. Res. 25(8):1007–1017, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Nin, J. R., M. Leyes, and D. Schweitzer. Anterior cruciate ligament reconstruction with fresh-frozen patellar tendon allografts: sixty cases with 2 years’ minimum follow-up. Knee Surg. Sports Traumatol. Arthrosc. 4(3):137–142, 1996.

    Article  CAS  PubMed  Google Scholar 

  38. Nissen, N. N., P. J. Polverini, A. E. Koch, M. V. Volin, R. L. Gamelli, and L. A. DiPietro. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am. J. Pathol. 152(6):1445–1452, 1998.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Orrego, M., C. Larrain, J. Rosales, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 24(12):1373–1380, 2008.

    Article  PubMed  Google Scholar 

  40. Proffen, B. L., M. McElfresh, B. C. Fleming, and M. M. Murray. A comparative anatomical study of the human knee and six animal species. Knee. 19(4):493–499, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Proffen B. L., P. Vavken, B. C. Fleming, C. M. Haslauer, C. Harris, J. T. Machan, M. M. Murray. Addition of autologous mesenchymal stem cells to whole blood for bio-enhanced ACL repair has no benefit in the porcine model. Am J Sports Med. 2014. doi:10.1177/0363546514559826.

  42. Scanlan, S. F., A. M. Chaudhari, C. O. Dyrby, and T. P. Andriacchi. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J. Biomech. 43(9):1817–1822, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Schmidt, C. C., H. I. Georgescu, C. K. Kwoh, et al. Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J. Orthop. Res. 13(2):184–190, 1995.

    Article  CAS  PubMed  Google Scholar 

  44. Shen, W., X. Chen, Y. Hu, et al. Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials. 35(28):8154–8163, 2014.

    Article  CAS  PubMed  Google Scholar 

  45. Silva, A., and R. Sampaio. Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing? Knee Surg. Sports Traumatol. Arthrosc. 17(6):676–682, 2009.

    Article  PubMed  Google Scholar 

  46. Song, E. K., J. K. Seon, J. H. Yim, S. H. Woo, H. Y. Seo, and K. B. Lee. Progression of osteoarthritis after double- and single-bundle anterior cruciate ligament reconstruction. Am. J. Sports Med. 41(10):2340–2346, 2013.

    Article  PubMed  Google Scholar 

  47. Soon, M. Y., A. Hassan, J. H. Hui, J. C. Goh, and E. H. Lee. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am. J. Sports Med. 35(6):962–971, 2007.

    Article  PubMed  Google Scholar 

  48. Spindler, K. P., J. M. Dawson, G. C. Stahlman, J. M. Davidson, and L. B. Nanney. Collagen expression and biomechanical response to human recombinant transforming growth factor beta (rhTGF-beta2) in the healing rabbit MCL. J. Orthop. Res. 20(2):318–324, 2002.

    Article  CAS  PubMed  Google Scholar 

  49. Spindler, K. P., M. M. Murray, K. B. Detwiler, et al. The biomechanical response to doses of TGF-beta 2 in the healing rabbit medial collateral ligament. J. Orthop. Res. 21(2):245–249, 2003.

    Article  CAS  PubMed  Google Scholar 

  50. Spreafico, A., F. Chellini, B. Frediani, et al. Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J. Cell Biochem. 108(5):1153–1165, 2009.

    Article  CAS  PubMed  Google Scholar 

  51. Tashman, S., P. Kolowich, D. Collon, K. Anderson, and W. Anderst. Dynamic function of the ACL-reconstructed knee during running. Clin. Orthop. Relat. Res. 454:66–73, 2007.

    Article  PubMed  Google Scholar 

  52. Tourville, T. W., R. J. Johnson, J. R. Slauterbeck, S. Naud, and B. D. Beynnon. Assessment of early tibiofemoral joint space width changes after anterior cruciate ligament injury and reconstruction: a matched case-control study. Am. J. Sports Med. 41(4):769–778, 2013.

    Article  PubMed  Google Scholar 

  53. Uggen, J. C., J. Dines, C. W. Uggen, et al. Tendon gene therapy modulates the local repair environment in the shoulder. J. Am. Osteopath. Assoc. 105(1):20–21, 2005.

    PubMed  Google Scholar 

  54. van Buul, G. M., W. L. Koevoet, N. Kops, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am. J. Sports Med. 39(11):2362–2370, 2011.

    Article  PubMed  Google Scholar 

  55. van Buul, G. M., M. Siebelt, M. J. Leijs, et al. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J. Orthop. Res. 32(9):1167–1174, 2014.

    Article  PubMed  Google Scholar 

  56. Van Eijk, F., D. B. Saris, J. Riesle, et al. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng. 10(5–6):893–903, 2004.

    Article  PubMed  Google Scholar 

  57. Vavken, P., B. C. Fleming, A. N. Mastrangelo, J. T. Machan, and M. M. Murray. Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy. 28(5):672–680, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Vavken, P., P. Sadoghi, and M. M. Murray. The effect of platelet concentrates on graft maturation and graft-bone interface healing in anterior cruciate ligament reconstruction in human patients: a systematic review of controlled trials. Arthroscopy. 27(11):1573–1583, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Vogrin, M., M. Rupreht, D. Dinevski, et al. Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind, clinical trial. Eur. Surg. Res. 45(2):77–85, 2010.

    Article  CAS  PubMed  Google Scholar 

  60. Webster, K. E., J. A. Feller, W. B. Leigh, and A. K. Richmond. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am. J. Sports Med. 42(3):641–647, 2014.

    Article  PubMed  Google Scholar 

  61. Werner, S., and R. Grose. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83(3):835–870, 2003.

    CAS  PubMed  Google Scholar 

  62. Xerogeanes, J. W., R. J. Fox, Y. Takeda, et al. A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann. Biomed. Eng. 26(3):345–352, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grant Numbers 1RO1-AR056834, 1RO1-AR056834S1 (ARRA), and 2R01-AR054099 from NIAMS/NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIAMS or NIH.

Conflict of interest

Dr. Murray reports grants from NIH, during the conduct of the study; In addition, Dr. Murray is an inventor listed on patents held by Boston Children’s Hospital in the area of ligament repair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel S. Perrone.

Additional information

Associate Editor Fei Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L. Proffen, B., S. Perrone, G., Roberts, G. et al. Bridge-Enhanced ACL Repair: A Review of the Science and the Pathway Through FDA Investigational Device Approval. Ann Biomed Eng 43, 805–818 (2015). https://doi.org/10.1007/s10439-015-1257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1257-z

Keywords

Navigation