Skip to main content
Log in

Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Regaining one’s ability to walk is of great importance for neurological patients and is a major goal of all rehabilitation programs. Gait training of severely affected patients after the neurological event is technically difficult because of their motor weakness and balance disturbances. An innovative locomotor training that incorporates high repetitions of task-oriented practice by the use of body weight-supported treadmill training (BWSTT) was developed to overcome these obstacles. To facilitate the delivery of BWSTT, a motorized robotic driven gait orthosis (robotic-assisted gait training-RAGT) was developed. Two types of robotic gait devices were developed, end-effector and exoskeleton devices. Several randomized controlled trials have been published regarding the usage of RAGT in patients after stroke, spinal cord injury (SCI), multiple sclerosis (MS) and other neurological diseases. According to these trials, the usage of RAGT in combination with conventional rehabilitation treatment has some additive beneficial effect on the ambulation abilities mainly in sub-acute stroke and sub-acute SCI patients. No difference was found between the two types of robotic gait devices. No sufficient data regarding an optimal protocol of RAGT is available, however a longer duration and a higher intensity of RAGT seem to have more beneficial effect on the final functional ambulation outcomes. Larger controlled studies are still required to determine the optimal timing and protocol design for the maximal efficacy and long-term outcome of RAGT in neurological patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Dobkin, B. H. Clinical practice. Rehabilitation after stroke. N Engl J Med 352:1677–1684, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hill, K., P. Ellis, J. Bernhardt, P. Maggs, and S. Hull. Balance and mobility outcomes for stroke patients: a comprehensive audit. Aust J Physiother 43:173–180, 1997.

    Article  PubMed  Google Scholar 

  3. Dobkin, B. H. An overview of treadmill locomotor training with partial body weight support: a neurophysiological sound approach whose time has come for randomized clinical trials. Neurorehabil Neural Repair 13:157–165, 1999.

    Article  Google Scholar 

  4. Barbeau, H., and S. Rossignol. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 26(412):84–95, 1987.

    Article  Google Scholar 

  5. Rossignol, S., R. Dubuc, and J. P. Gossard. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 86:89–154, 2006.

    Article  PubMed  Google Scholar 

  6. Barbeau, H., M. Danakas, and B. Arsenault. The effects of locomotor training in spinal cord injured subjects: a preliminary study. Restor Neurol Neurosci. 1(5):81–84, 1993.

    Google Scholar 

  7. Colombo, G., M. Joerg, R. Schreier, and V. Dietz. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 37:693–700, 2000.

    CAS  PubMed  Google Scholar 

  8. Nilsson, L., J. Carlsson, A. Danielsson, A. Fugl-Meyer, K. Hellström, L. Kristensen, B. Sjölund, K. S. Sunnerhagen, and G. Grimby. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 15:515–527, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Colombo, G., M. Wirz, and V. Dietz. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39:252–255, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Hesse, S., and D. Uhlenbrock. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 37:701–708, 2000.

    CAS  PubMed  Google Scholar 

  11. Freivogel, S., J. Mehrholz, T. Husak-Sotomayor, and D. Schmalohr. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 22:625–632, 2008.

    Google Scholar 

  12. Hesse, S., A. Waldner, and C. Tomelleri. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7:30, 2010.

  13. Hesse, S., M. Malezic, A. Schaffrin, and K. H. Mauritz. Restoration of gait by combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients. Scand J Rehabil Med 27:199–204, 1995.

    CAS  PubMed  Google Scholar 

  14. Billinger, S. A., R. Arena, J. Bernhardt, J. J. Eng, B. A. Franklin, C. M. Johnson, M. MacKay-Lyons, R. F. Macko, G. E. Mead, E. J. Roth, M. Shaughnessy, and A. Tang. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 45:2532–2553, 2014.

    Article  PubMed  Google Scholar 

  15. Schmidt, H., S. Hesse, R. Bernhardt, and J. Krüger. HapticWalker a novel haptic foot device. ACM Transactions on Applied Perception 2:166–180, 2005.

    Article  Google Scholar 

  16. Khanna, I., A. Roy, M. M. Rodgers, H. I. Krebs, R. M. Macko, and L. W. Forrester. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil. 7:23, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fleerkotte, B. M., B. Koopman, J. H. Buurke, E. H. van Asseldonk, H. van der Kooij, and J. S. Rietman. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J. Neuroeng. Rehabil. 11:26, 2014.

  18. Fisher, S., L. Lucas, and T. A. Thrasher. Robot-assisted gait training for patients with hemiparesis due to stroke. Top Stroke Rehabil. 18(3):269–276, 2011.

  19. Wu, M., T. G. Hornby, J. M. Landry, H. Roth, and B. D. Schmit. A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture. 33:256–260, 2011.

    Article  PubMed  Google Scholar 

  20. Tefertiller, C., B. Pharo, N. Evans, and P. Winchester. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 48:387–416, 2011.

    Article  PubMed  Google Scholar 

  21. Williams, G. R., J. G. Jiang, D. B. Matchar, and G. P. Samsa. Incidence and occurrence of total (first-ever and recurrent) stroke. Stroke 30:2523–2528, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Bohannon, R. W., M. G. Horton, and J. B. Wikholm. Importance of four variables of walking to patients with stroke. Int J Rehab Res 14:246–250, 1991.

    Article  CAS  Google Scholar 

  23. Wade, D. T., V. A. Wood, A. A. Heller, J. Maggs, and H. R. Langton. Walking after stroke. Measurement and recovery over the first 3 months. Scand. J. Rehabil. Med. 19:25–30, 1987.

  24. Mehrholz, J., C. Werner, J. Kugler, and M. Pohl. Electrome-chanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 4: Art no. CD006185, 2007.

  25. Chang, W. H., and Y. H. Kim. Robot-assisted Therapy in Stroke Rehabilitation. Journal of Stroke 15:174–181, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Werner, C., S. Von Frankenberg, T. Treig, et al. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 33:2895–2901, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. Tong, R. K., M. F. Ng, and L. S. Li. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 87:1298–1304, 2006.

    Article  PubMed  Google Scholar 

  28. Pohl, M., C. Werner, M. Holzgraefe, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 21:17–27, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. Peurala, S. H., O. Airaksinen, P. Huuskonen, P. Jakala, M. Juhakoski, K. Sandell, et al. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med 41:166–173, 2009.

    Article  PubMed  Google Scholar 

  30. Morone, G., M. Bragoni, M. Iosa, D. De Angelis, V. Venturiero, P. Coiro, et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair 25:636–644, 2011.

    Article  PubMed  Google Scholar 

  31. Hesse, S., C. Tomelleri, A. Bardeleben, C. Werner, and A. Waldner. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. J Rehabil Res Dev. 49(4):613–622, 2012.

    Article  PubMed  Google Scholar 

  32. Husemann, B., F. Müller, C. Krewer, et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 38:349–354, 2007.

    Article  PubMed  Google Scholar 

  33. Mayr, A., M. Kofler, E. Quirbach, et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 21:307–314, 2007.

    Article  PubMed  Google Scholar 

  34. Hidler, J., D. Nichols, M. Pelliccio, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 23:5–13, 2009.

    Article  PubMed  Google Scholar 

  35. Schwartz, I., A. Sajin, I. Fisher, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R. 1:516–523, 2009.

    Article  PubMed  Google Scholar 

  36. Chang, W. H., M. S. Kim, J. P. Huh, P. K. Lee, and Y. H. Kim. Effects of ro-bot-assisted gait training on cardiopulmonary fitness in sub-acute stroke patients: a randomized controlled study. Neurore-habil Neural Repair 26:318–324, 2012.

    Article  Google Scholar 

  37. Peurala, S. H., I. M. Tarkka, K. Pitkänen, and J. Sivenius. The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil. 86:1557–1564, 2005.

    Article  PubMed  Google Scholar 

  38. Dias, D., J. Lains, A. Pereira, R. Nunes, J. Caldas, C. Amaral, et al. Can we improve gait skills in chronic hemiplegics? A ran-domised control trial with gait trainer. Eura Medicophys 43:499–504, 2007.

    CAS  PubMed  Google Scholar 

  39. Hornby, T. G., D. D. Campbell, J. H. Kahn, et al. Enhanced gait-related improvements after thera-pist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 39:1786–1792, 2008.

    Article  PubMed  Google Scholar 

  40. Jung, K. H., H. G. Ha, H. J. Shin, S. H. Ohn, D. H. Sung, P. K. W. Lee, et al. Effects of Robot-assisted Gait Therapy on Locomotor Re-covery in Stroke Patients. J Korean Acad Rehabil Med 32:258–266, 2008.

    Google Scholar 

  41. Westlake, K. P., and C. Patten. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 6:18, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Holden, M. K., K. M. Gill, and M. R. Magliozzi. Gait assessment for neurologically impaired patients. Phys. Ther. 66:1530–1539, 1986.

  43. Brooks, D., A. M. Davis, and G. Naglie. Validity of 3 physical performance measures in inpatient geriatric rehabilitation. Arch Phys Med Rehabil 87:105–110, 2006.

    Article  PubMed  Google Scholar 

  44. Mehrholz, J., B. Elsner, C. Werner, J. Kugler, and M. Pohl. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 7. Art. No.: CD006185, 2013. doi:10.1002/14651858.CD006185.pub3.

  45. Kraus, J. F., and D. L. McArthur. Epidemiologic aspects of brain injury. Neurol. Clin. 14:435–450, 1996. Review

  46. Thurman, D. J., V. Coronado, and A. Selassie. The epidemyology of TBI: implication for public health. In: Brain Injury Medicine: Principles and Practice, edited by N. D. Zasler, D. I. Katz, R. D. Zafonte. New York: Demos Medical Publishers, 2007, pp. 45–55.

  47. Williams, G., M. E. Morris, A. Schache, and P. R. McCrory. Incidence of gait abnormalities after traumatic brain injury. Arch Phys Med Rehabil 90:587–593, 2009.

    Article  PubMed  Google Scholar 

  48. Esquenazi, A., and M. Talaty. Gait analysis, technology and clinical applications. In: Physical Medicine and Rehabilitation4th, edited by R. L. Braddom. Philadelphia, PA: Elsevier, 2011, pp. 99–116.

    Chapter  Google Scholar 

  49. Freivogel, S., J. Mehrholz, T. Husak-Sotomayor, and D. Schmalohr. Gait training with the newly developed ‘LokoHelp’-system is feasible for nonambulatory patients after stroke, spinal cord and brain injury. A feasibilitystudy. Brain Inj 22:625–632, 2008.

    Article  Google Scholar 

  50. Esquenazi, A., S. Lee, A. T. Packel, and L. Braitman. A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. PM R 5:280–290, 2013.

    Article  PubMed  Google Scholar 

  51. Wyndaele, M., and J. J. Wyndaele. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44:523–529, 2006.

    Article  CAS  PubMed  Google Scholar 

  52. Ackery, A., C. Tator, and A. Krassioukov. A global perspective on spinal cord injury epidemiology. J Neurotrauma 21:1355–1370, 2004.

    Article  PubMed  Google Scholar 

  53. Williams, G., M. E. Morris, A. Schache, and P. R. McCrory. Incidence of gait abnormalities after traumatic brain injury. Arch. Phys. Med. Rehabil. 90(4):587–593, 2009.

  54. Waters, R. L., R. H. Adkins, and J. S. Yakura. Motor and sensory recovery following incomplete paraplegia. Arch Phys Med Rehabil 75:67–72, 1994.

    Article  CAS  PubMed  Google Scholar 

  55. Dobkin, B. H., D. Apple, H. Barbeau, et al. Methods for a randomized trial of weight- supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair 17:153–167, 2003.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Dobkin, B., H. Barbeau, D. Deforge, J. Ditunno, R. Elashoff, D. Apple, M. Basso, A. Behrman, L. Fugate, S. Harkema, M. Saulino, and M. Scott. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair 21:25–35, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hubli and Dietz. The physiological basis of neurorehabilitation—locomotor training after spinal cord injury. Journal of NeuroEngineering and Rehabilitation 10:5, 2013.

    Article  Google Scholar 

  58. Dietz, V., M. Wirz, A. Curt, and G. Colombo. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord 36:380–390, 1998.

    Article  CAS  PubMed  Google Scholar 

  59. Field-Fote, E. C., S. D. Lindley, and A. L. Sherman. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther 29:127–137, 2005.

    Article  PubMed  Google Scholar 

  60. Nooijen, C. F., N. ter Hoeve, and E. C. Field-Fote. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 6:36, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Field-Fote, E. C., and K. E. Roach. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 91:48–64, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Alcobendas-Maestro, M., A. Escları´n-Ruz, R. M. Casado-López, et al. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil. Neural Repair 26:1058–1063, 2012.

  63. Hoekstra, F., M. P. van Nunen, K. H. Gerrits, J. M. Stolwijk-Swüste, M. H. Crins, and T. W. Janssen. Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury. J Rehabil Res Dev. 50:1411–1422, 2013.

    Article  PubMed  Google Scholar 

  64. Gordon, K. E., M. J. Wald, and T. J. Schnitzer. Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R. 5:663–671, 2013.

  65. Steinman, L. Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764, 2001.

    Article  CAS  PubMed  Google Scholar 

  66. Karni, A., E. Kahana, N. Zilber, O. Abramsky, M. Alter, and D. Karussis. The frequency of multiple sclerosis in Jewish and Arab populations in greater Jerusalem. Neuroepidemiology 22:82–86, 2003.

    Article  PubMed  Google Scholar 

  67. Khan, F., L. Turner-Stokes, L. Ng, and T. Kilpatrick. Multidisciplinary rehabilitation for adults with multiple sclerosis. Cochrane Database Syst. Rev. Apr 18: CD006036, 2007. Review.

  68. Giesser, B., J. Beres-Jones, A. Budovitch, E. Herlihy, and S. Harkema. Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study. Mult Scler 13:224–231, 2007.

    Article  PubMed  Google Scholar 

  69. Pilutti, L. A., D. A. Lelli, J. E. Paulseth, M. Crome, S. Jiang, M. P. Rath-bone, et al. Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progres-sive multiple sclerosis: a pilot study. Arch Phys Med Rehabil 92:31–36, 2011.

    Article  PubMed  Google Scholar 

  70. Lo, A. C., and E. W. Triche. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 22:661–671, 2008.

    Article  PubMed  Google Scholar 

  71. Beer, S., B. Aschbacher, D. Manoglou, E. Gamper, J. Kool, and J. Kesselring. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 14:231–236, 2008.

    Article  CAS  PubMed  Google Scholar 

  72. Schwartz, I., A. Sajin, E. Moreh, I. Fisher, M. Neeb, A. Forest, et al. Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult. Scler. 18:881–890, 2012.

    Article  PubMed  Google Scholar 

  73. Vaney, C., B. Gattlen, V. Lugon-Moulin, A. Meichtry, R. Hausammann, D. Foinant, et al. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil. Neural Repair. 26:212–221, 2012.

    Article  PubMed  Google Scholar 

  74. Straudi, S., M. G. Benedetti, E. Venturini, M. Manca, C. Foti, and N. Basaglia. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis?. A pilot randomized-control trial. NeuroRehabilitation 33:555–563, 2013.

    CAS  Google Scholar 

  75. Gandolfi, M., C. Geroin, A. Picelli, A. Picelli, W. A. Munari, A. Tamburin, F. Marchioretto, and N. Smania. Munari, A, S, F, N. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front. Hum. Neurosci. 8:318, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Kurtzke, J. F. Rating neurologic impairment in multiple scle-rosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452, 1983.

    Article  CAS  PubMed  Google Scholar 

  77. Schmartz, A. C., A. D. Meyer-Heim, R. Müller, and M. Bolliger. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 6:29–37, 2011.

    Article  PubMed  Google Scholar 

  78. Lo, A. C., V. C. Chang, M. A. Gianfrancesco, et al. Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil. 14(7):51, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Meiner.

Additional information

Associate Editor Sigal Portnoy oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, I., Meiner, Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit?. Ann Biomed Eng 43, 1260–1269 (2015). https://doi.org/10.1007/s10439-015-1283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1283-x

Keywords

Navigation