Skip to main content
Log in

Should We Ignore What We Cannot Measure? How Non-Uniform Stretch, Non-Uniform Wall Thickness and Minor Side Branches Affect Computational Aortic Biomechanics in Mice

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to advance the state-of-the-art in computational aortic biomechanics, we investigated the influence of (i) a non-uniform wall thickness, (ii) minor aortic side branches and (iii) a non-uniform axial stretch distribution on the location of predicted hotspots of principal strain in a mouse model for dissecting aneurysms. After 3 days of angiotensin II infusion, a murine abdominal aorta was scanned in vivo with contrast-enhanced micro-CT. The animal was subsequently sacrificed and its aorta was scanned ex vivo with phase-contrast X-ray tomographic microscopy (PCXTM). An automatic morphing framework was developed to map the non-pressurized, non-stretched PCXTM geometry onto the pressurized, stretched micro-CT geometry. The output of the morphing model was a structural FEM simulation where the output strain distribution represents an estimation of the wall deformation, not only due to the pressurization, but also due to the local axial stretch field. The morphing model also included minor branches and a mouse-specific wall thickness. A sensitivity study was then performed to assess the influence of each of these novel features on the outcome of the simulations. The results were supported by comparing the computed hotspots of principal strain to hotspots of early vascular damage as detected on PCXTM. Non-uniform axial stretch, non-uniform wall thickness and minor subcostal arteries significantly alter the locations of calculated hotspots of maximal principal strain. Even if experimental data on these features are often not available in clinical practice, one should be aware of the important implications that simplifications in the model might have on the final simulated result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23(6):704–713, 2004.

    Article  PubMed  Google Scholar 

  2. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097, 2008.

    Article  PubMed  Google Scholar 

  3. Avril, S., P. Badel, M. Gabr, M. A. Sutton, and S. M. Lessner. Biomechanics of porcine renal arteries and role of axial stretch. J. Biomech. Eng. 135(8):081007, 2013.

    Article  Google Scholar 

  4. Bersi, M., J. Ferruzzi, J. Eberth, R. Gleason, Jr., and J. Humphrey. Consistent biomechanical phenotyping of common carotid arteries from seven genetic, pharmacological, and surgical mouse models. Ann. Biomed. Eng. 42(6):1207–1223, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bols, J., L. Taelman, G. De Santis, J. Degroote, B. Verhegghe, P. Segers, and J. Vierendeels. Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach. Comput. Methods Biomech. Biomed. Eng. 19(6):663–672, 2016.

    Article  Google Scholar 

  6. Bond, A. R., C.-W. Ni, H. Jo, and P. D. Weinberg. Intimal cushions and endothelial nuclear elongation around mouse aortic branches and their spatial correspondence with patterns of lipid deposition. Am. J. Physiol. Heart Circ. Physiol. 298(2):H536–H544, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Collins, M., M. Bersi, E. Wilson, and J. Humphrey. Mechanical properties of suprarenal and infrarenal abdominal aorta: implications for mouse models of aneurysms. Med. Eng. Phys. 33(10):1262–1269, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conlisk, N., A. J. Geers, O. M. McBride, D. E. Newby, and P. R. Hoskins. Patient-specific modelling of abdominal aortic aneurysms: the influence of wall thickness on predicted clinical outcomes. Med. Eng. Phys. 38(6):526–537, 2016.

    Article  PubMed  Google Scholar 

  9. Daugherty, A., and L. A. Cassis. Mouse models of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24(3):429–434, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Daugherty, A., M. W. Manning, and L. A. Cassis. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Investig. 105(11):1605–1612, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dua, M. M., and R. L. Dalman. Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm pathophysiology. Vasc. Pharmacol. 53(1):11–21, 2010.

    Article  CAS  Google Scholar 

  12. Feintuch, A., P. Ruengsakulrach, A. Lin, J. Zhang, Y.-Q. Zhou, J. Bishop, et al. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292(2):H884–H892, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Figueroa, C. A., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198(45):3583–3602, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Friedman, J. H., J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3):209–226, 1977.

    Article  Google Scholar 

  15. Gamble, G., B. Beaumont, H. Smith, J. Zorn, G. Sanders, M. Merrilees, and N. Sharpe. B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements. Atherosclerosis 102(2):163–173, 1993.

    Article  CAS  PubMed  Google Scholar 

  16. Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40(2):176–185, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Guo, X., and G. S. Kassab. Variation of mechanical properties along the length of the aorta in C57bl/6 mice. Am. J. Physiol. Heart Circ. Physiol. 285(6):H2614–H2622, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Haker, S., S. Angenent, A. Tannenbaurn, and R. Kikinis. Nondistorting flattening maps and the 3-D visualization of colon CT images. IEEE Trans. Med. Imaging 19(7):665–670, 2000.

    Article  CAS  PubMed  Google Scholar 

  19. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Cardiovasc. Soft Tissue Mech. 61:1–48, 2001.

    Google Scholar 

  20. Humphrey, J. D., and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45(5):805–814, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Humphrey, J., J. Eberth, W. Dye, and R. Gleason. Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42(1):1–8, 2009.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, J., and S. Baek. Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test. J. Biomech. 44(10):1941–1947, 2011.

    Article  PubMed  Google Scholar 

  23. Nakashima, Y., A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol. 14(1):133–140, 1994.

    Article  CAS  Google Scholar 

  24. Raaz, U., A. M. Zöllner, I. N. Schellinger, R. Toh, F. Nakagami, M. Brandt, et al. Segmental aortic stiffening contributes to experimental abdominal aortic aneurysm development. Circulation 2015. doi:10.1161/CIRCULATIONAHA.114.012377.

    PubMed  PubMed Central  Google Scholar 

  25. Raut, S. S., A. Jana, V. De Oliveira, S. C. Muluk, and E. A. Finol. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J. Biomech. Eng. 135(8):081010, 2013.

    Article  Google Scholar 

  26. Reymond, P., P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 35(6):784–791, 2013.

    Article  PubMed  Google Scholar 

  27. Saraff, K., F. Babamusta, L. A. Cassis, and A. Daugherty. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23(9):1621–1626, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Shang, E. K., D. P. Nathan, E. Y. Woo, R. M. Fairman, G. J. Wang, R. C. Gorman, and B. M. Jackson. Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. J. Vasc. Surg. 61(1):217–223, 2015.

    Article  PubMed  Google Scholar 

  29. Stampanoni, M., G. Borchert, P. Wyss, R. Abela, B. Patterson, S. Hunt, and P. Ruegsegger. High resolution X-ray detector for synchrotron-based microtomography. Nucl. Instrum. Methods Phys. Res. A 491(1):291–301, 2002.

    Article  CAS  Google Scholar 

  30. Trachet, B., M. Renard, G. De Santis, S. Staelens, J. De Backer, L. Antiga, and P. Segers. An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE−/− mice. Ann. Biomed. Eng. 39(9):2430–2444, 2011.

    Article  PubMed  Google Scholar 

  31. Trachet, B., J. Bols, J. Degroote, B. Verhegghe, N. Stergiopulos, J. Vierendeels, and P. Segers. An animal-specific FSI model of the abdominal aorta in anesthetized mice. Ann. Biomed. Eng. 43(6):1298–1309, 2015.

    Article  PubMed  Google Scholar 

  32. Trachet, B., R. A. Fraga-Silva, A. Piersigilli, A. Tedgui, J. Sordet-Dessimoz, A. Astolfo, and N. Stergiopulos. Dissecting abdominal aortic aneurysm in Ang II-infused mice: suprarenal branch ruptures and apparent luminal dilatation. Cardiovasc. Res. 105(2):213–222, 2015.

    Article  CAS  PubMed  Google Scholar 

  33. Trachet, B., A. Piersigilli, L. Aslanidou, R. A. Fraga-Silva, J. Sordet-Dessimoz, P. Villanueva-Perez, and P. Segers. Angiotensin II infusion into ApoE−/− mice: a model for aortic dissection rather than abdominal aortic aneurysm? Cardiovasc. Res. 113(10):1230–1242, 2017.

    Article  PubMed  Google Scholar 

  34. Vincent, P., A. Plata, A. Hunt, P. Weinberg, and S. Sherwin. Blood flow in the rabbit aortic arch and descending thoracic aorta. J. R. Soc. Interface 8(65):1708–1719, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40(9):1887–1902, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Voß, S., S. Glaßer, T. Hoffmann, O. Beuing, S. Weigand, K. Jachau, et al. Fluid–structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. Comput. Math. Methods Med. 2016. doi:10.1155/2016/9854539.

    PubMed  PubMed Central  Google Scholar 

  37. Wehrl, H. F., I. Bezrukov, S. Wiehr, M. Lehnhoff, K. Fuchs, J. G. Mannheim, and B. J. Pichler. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging. Histol. Histopathol. 30(5):601–613, 2015.

    CAS  PubMed  Google Scholar 

  38. Wilson, J., S. Baek, and J. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 2012. doi:10.1098/rsif.2012.0097.

    Google Scholar 

  39. Wilson, J. S., M. R. Bersi, G. Li, and J. D. Humphrey. Correlation of wall microstructure and heterogeneous distributions of strain in evolving murine abdominal aortic aneurysms. Cardiovasc. Eng. Technol. 8(2):1–12, 2017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ferraro.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, M., Trachet, B., Aslanidou, L. et al. Should We Ignore What We Cannot Measure? How Non-Uniform Stretch, Non-Uniform Wall Thickness and Minor Side Branches Affect Computational Aortic Biomechanics in Mice. Ann Biomed Eng 46, 159–170 (2018). https://doi.org/10.1007/s10439-017-1945-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1945-y

Keywords

Navigation