Skip to main content
Erschienen in: Angiogenesis 3/2013

01.07.2013 | Original Paper

Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine

verfasst von: Paola Cipriani, Alessandra Marrelli, Paola Di Benedetto, Vasiliki Liakouli, Francesco Carubbi, Piero Ruscitti, Saverio Alvaro, Ilenia Pantano, Antonio Francesco Campese, Paola Grazioli, Isabella Screpanti, Roberto Giacomelli

Erschienen in: Angiogenesis | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Vascular involvement is a key feature of Systemic sclerosis (SSc). Although the pericytes/endothelial cells (ECs) cross-talk regulates vessels formation, no evidences about the pericytes contribution to ineffective angiogenesis in SSc are available. Recent findings showed similarities between pericytes and Bone Marrow Mesenchymal Stem Cells (BM-MSCs). Due to difficulties in pericytes isolation, this work explores the possibility to use BM-MSCs as pericytes surrogate, clarifying their role in supporting neo-angiogenesis during SSc.

Methods

To demonstrate their potential to normally differentiate into pericytes, both SSc and healthy controls (HC) BM-MSCs were treated with TGF-β and PDGF-BB. The expression of pericytes specific markers (α-SMA, NG2, RGS5 and desmin) was assessed by qPCR, western blot, and immunofluorescence; chemioinvasion and capillary morphogenesis were also performed. Cell-sorting of BM-MSCs co-cultured with HC-ECs was used to identify a possible change in contractile proteins genes expression.

Results

We showed that BM-MSCs isolated from SSc patients displayed an up-regulation of α-SMA and SM22α genes and a reduced proliferative activity. Moreover during SSc, both TGF-β and PDGF-BB can specifically modulate BM-MSCs toward pericytes. TGF-β was found interfering with the PDGF-BB effects. Using BM-MSCs/MVECs co-culture system we observed that SSc BM-MSCs improve ECs tube formation in stressed condition, and BM-MSCs, sorted after co-culture, showed a reduced α-SMA and SM22α gene expression.

Conclusions

BM-MSCs from SSc patients behave as pericytes. They display a more mature and myofibroblast-like phenotype, probably related to microenvironmental cues operating during the disease. After their co-culture with HC-MVECs, SSc BM-MSCs underwent to a phenotypic modulation which re-programs these cells toward a pro-angiogenic behaviour.
Literatur
1.
Zurück zum Zitat LeRoy EC (1996) Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am 22:675–694PubMedCrossRef LeRoy EC (1996) Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am 22:675–694PubMedCrossRef
2.
Zurück zum Zitat Kahaleh MB (2004) Vascular involvement in systemic sclerosis (SSc). Clin Exp Rheumatol 22(3 Suppl 33): S19–S23 Kahaleh MB (2004) Vascular involvement in systemic sclerosis (SSc). Clin Exp Rheumatol 22(3 Suppl 33): S19–S23
3.
Zurück zum Zitat Fleming JN, Nash RA, Mahoney WM Jr, Schwartz SM (2009) Is scleroderma a vasculopathy? Curr Rheumatol Rep 11:103–110PubMedCrossRef Fleming JN, Nash RA, Mahoney WM Jr, Schwartz SM (2009) Is scleroderma a vasculopathy? Curr Rheumatol Rep 11:103–110PubMedCrossRef
4.
Zurück zum Zitat Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells:new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004PubMedCrossRef Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells:new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004PubMedCrossRef
5.
Zurück zum Zitat Manetti M, Ibba-Manneschi L, Liakouli V, Guiducci S, Milia AF et al (2010) The IL1-like cytokine IL33 and its receptor ST2 are abnormally expressed in the affected skin and visceral organs of patients with systemic sclerosis. Ann Rheum Dis 69:598–605PubMedCrossRef Manetti M, Ibba-Manneschi L, Liakouli V, Guiducci S, Milia AF et al (2010) The IL1-like cytokine IL33 and its receptor ST2 are abnormally expressed in the affected skin and visceral organs of patients with systemic sclerosis. Ann Rheum Dis 69:598–605PubMedCrossRef
6.
Zurück zum Zitat Cipriani P, Franca Milia A, Liakouli V, Pacini A, Manetti M et al (2006) Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: pathogenetic implications. Arthritis Rheum 54:3022–3033PubMedCrossRef Cipriani P, Franca Milia A, Liakouli V, Pacini A, Manetti M et al (2006) Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: pathogenetic implications. Arthritis Rheum 54:3022–3033PubMedCrossRef
7.
Zurück zum Zitat Cipriani P, Marrelli A, Liakouli V, Di Benedetto P, Giacomelli R (2011) Cellular players in angiogenesis during the course of systemic sclerosis. Autoimmun Rev 10:641–646PubMedCrossRef Cipriani P, Marrelli A, Liakouli V, Di Benedetto P, Giacomelli R (2011) Cellular players in angiogenesis during the course of systemic sclerosis. Autoimmun Rev 10:641–646PubMedCrossRef
8.
Zurück zum Zitat Liakouli V, Cipriani P, Marrelli A, Alvaro S, Ruscitti P et al (2011) Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun Rev 10:590–594PubMedCrossRef Liakouli V, Cipriani P, Marrelli A, Alvaro S, Ruscitti P et al (2011) Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun Rev 10:590–594PubMedCrossRef
9.
11.
Zurück zum Zitat Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698PubMed Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698PubMed
12.
Zurück zum Zitat Antonelli-Orlidge A, Smith SR, D’Amore PA (1989) Influence of pericytes on capillary endothelial cell growth. Am Rev Respir Dis 140:1129–1131PubMedCrossRef Antonelli-Orlidge A, Smith SR, D’Amore PA (1989) Influence of pericytes on capillary endothelial cell growth. Am Rev Respir Dis 140:1129–1131PubMedCrossRef
13.
Zurück zum Zitat Gerhardt H, Semb H (2008) Pericytes: gatekeepers in tumour cell metastasis? J Mol Med 86:135–144PubMedCrossRef Gerhardt H, Semb H (2008) Pericytes: gatekeepers in tumour cell metastasis? J Mol Med 86:135–144PubMedCrossRef
14.
Zurück zum Zitat Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523PubMedCrossRef Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523PubMedCrossRef
15.
Zurück zum Zitat Takakura N (2011) Role of intimate interactions between endothelial cells and the surrounding accessory cells in the maturation of blood vessels. J Thromb Haemost 9:144–150PubMedCrossRef Takakura N (2011) Role of intimate interactions between endothelial cells and the surrounding accessory cells in the maturation of blood vessels. J Thromb Haemost 9:144–150PubMedCrossRef
16.
Zurück zum Zitat Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814PubMedCrossRef Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814PubMedCrossRef
17.
18.
Zurück zum Zitat Darland DC, D’Amore PA (2001) TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4:11–20PubMedCrossRef Darland DC, D’Amore PA (2001) TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4:11–20PubMedCrossRef
19.
Zurück zum Zitat Crisan M, Yap S, Casteilla L, Chen CW, Corselli M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 11:301–313CrossRef Crisan M, Yap S, Casteilla L, Chen CW, Corselli M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 11:301–313CrossRef
20.
Zurück zum Zitat da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299PubMedCrossRef da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299PubMedCrossRef
21.
Zurück zum Zitat Cai X, Lin Y, Friedrich CC, Neville C, Pomerantseva I et al (2009) Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev 5:437–445PubMedCrossRef Cai X, Lin Y, Friedrich CC, Neville C, Pomerantseva I et al (2009) Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev 5:437–445PubMedCrossRef
22.
Zurück zum Zitat Bryan BA, D’Amore PA (2008) Pericyte isolation and use in endothelial/pericyte coculture models. Methods Enzymol 443:315–331PubMedCrossRef Bryan BA, D’Amore PA (2008) Pericyte isolation and use in endothelial/pericyte coculture models. Methods Enzymol 443:315–331PubMedCrossRef
23.
Zurück zum Zitat Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 19:324–336CrossRef Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 19:324–336CrossRef
24.
Zurück zum Zitat Tormin A, Li O, Brune JC, Walsh S, Schütz B et al (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 12:5067–5077CrossRef Tormin A, Li O, Brune JC, Walsh S, Schütz B et al (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 12:5067–5077CrossRef
25.
Zurück zum Zitat da Silva Meirelles L, Sand TT, Harman RJ, Lennon DP, Caplan AI (2009) MSC frequency correlates with blood vessel in equine adipose tissue. Tissue Eng Part A 15:221–229PubMedCrossRef da Silva Meirelles L, Sand TT, Harman RJ, Lennon DP, Caplan AI (2009) MSC frequency correlates with blood vessel in equine adipose tissue. Tissue Eng Part A 15:221–229PubMedCrossRef
26.
Zurück zum Zitat Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784PubMedCrossRef Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784PubMedCrossRef
27.
Zurück zum Zitat Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630PubMedCrossRef Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630PubMedCrossRef
28.
Zurück zum Zitat Díaz-Flores L Jr, Madrid JF, Gutiérrez R, Varela H, Valladares F (2006) Adult stem and transit-amplifying cell location. Histol Histopathol 21:995–1027PubMed Díaz-Flores L Jr, Madrid JF, Gutiérrez R, Varela H, Valladares F (2006) Adult stem and transit-amplifying cell location. Histol Histopathol 21:995–1027PubMed
29.
Zurück zum Zitat Hoofnagle MH, Thomas JA, Wamhoff BR, Owens GK (2006) Origin of neointimal smooth muscle: we’ve come full circle. Arterioscler Thromb Vasc Biol 26:2579–2581PubMedCrossRef Hoofnagle MH, Thomas JA, Wamhoff BR, Owens GK (2006) Origin of neointimal smooth muscle: we’ve come full circle. Arterioscler Thromb Vasc Biol 26:2579–2581PubMedCrossRef
30.
Zurück zum Zitat Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517PubMed Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517PubMed
31.
Zurück zum Zitat Mack CP (2011) Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31:1495–1505PubMedCrossRef Mack CP (2011) Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31:1495–1505PubMedCrossRef
32.
Zurück zum Zitat Challier JC, Kacemi A, Olive G (1995) Mixed culture of pericytes and endothelial cells from fetal microvessels of the human placenta. Cell Mol Biol 41:233–241PubMed Challier JC, Kacemi A, Olive G (1995) Mixed culture of pericytes and endothelial cells from fetal microvessels of the human placenta. Cell Mol Biol 41:233–241PubMed
33.
Zurück zum Zitat Helmbold P, Nayak RC, Marsch WC, Herman IM (2001) Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc Res 61:160–165PubMedCrossRef Helmbold P, Nayak RC, Marsch WC, Herman IM (2001) Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc Res 61:160–165PubMedCrossRef
34.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRef
35.
Zurück zum Zitat Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell. J Vasc Res 36:2–27PubMedCrossRef Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell. J Vasc Res 36:2–27PubMedCrossRef
36.
Zurück zum Zitat Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801PubMedCrossRef Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801PubMedCrossRef
37.
Zurück zum Zitat Aikawa M, Sakomura Y, Ueda M, Kimura K, Manabe I et al (1997) Differentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Circulation 96:82–90PubMedCrossRef Aikawa M, Sakomura Y, Ueda M, Kimura K, Manabe I et al (1997) Differentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Circulation 96:82–90PubMedCrossRef
38.
Zurück zum Zitat Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N et al (1996) Vascular remodelling. Hypertension 28(3):505–506PubMed Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N et al (1996) Vascular remodelling. Hypertension 28(3):505–506PubMed
39.
Zurück zum Zitat Helmbold P, Fiedler E, Fischer M, Marsch WCh (2004) Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol 31:431–440PubMedCrossRef Helmbold P, Fiedler E, Fischer M, Marsch WCh (2004) Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol 31:431–440PubMedCrossRef
40.
Zurück zum Zitat Rajkumar VS, Sundberg C, Abraham DJ, Rubin K, Black CM (1999) Activation of microvascular pericytes in autoimmune Raynaud’s phenomenon and systemic sclerosis. Arthritis Rheum 42:930–941PubMedCrossRef Rajkumar VS, Sundberg C, Abraham DJ, Rubin K, Black CM (1999) Activation of microvascular pericytes in autoimmune Raynaud’s phenomenon and systemic sclerosis. Arthritis Rheum 42:930–941PubMedCrossRef
41.
Zurück zum Zitat Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, et al (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 3(1):e 14–52. doi: 10.1371/journal.pone.0001452 Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, et al (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 3(1):e 14–52. doi: 10.​1371/​journal.​pone.​0001452
42.
Zurück zum Zitat Witmer AN, van Blijswijk BC, van Noorden CJF, Vrensen GFJM, Schlingemann RO (2004) In vivo angiogenic phenotype of endothelial cells and pericyte induced by vascular endothelial growth factor-A. J Histochem Cytochem 52:39–52PubMedCrossRef Witmer AN, van Blijswijk BC, van Noorden CJF, Vrensen GFJM, Schlingemann RO (2004) In vivo angiogenic phenotype of endothelial cells and pericyte induced by vascular endothelial growth factor-A. J Histochem Cytochem 52:39–52PubMedCrossRef
43.
Zurück zum Zitat Palumbo R, Gaetano C, Melillo G, Toschi E, Remuzzi A et al (2000) Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102:225–230PubMedCrossRef Palumbo R, Gaetano C, Melillo G, Toschi E, Remuzzi A et al (2000) Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102:225–230PubMedCrossRef
44.
Zurück zum Zitat Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69:614–624PubMedCrossRef Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69:614–624PubMedCrossRef
45.
Zurück zum Zitat Risinger GM Jr, Hunt TS, Updike DL, Bullen EC, Howard EW (2006) Matrix metalloproteinase-2 expression by vascular smooth muscle cells is mediated by both stimulatory and inhibitory signals in response to growth factors. J Biol Chem 281:25915–25925PubMedCrossRef Risinger GM Jr, Hunt TS, Updike DL, Bullen EC, Howard EW (2006) Matrix metalloproteinase-2 expression by vascular smooth muscle cells is mediated by both stimulatory and inhibitory signals in response to growth factors. J Biol Chem 281:25915–25925PubMedCrossRef
46.
Zurück zum Zitat Tokunaga A, Oya T, Ishii Y, Motomura H, Nakamura C et al (2008) PDGF receptor beta is a potent regulator of mesenchymal stromal cell function. J Bone Miner Res 23:1519–1528PubMedCrossRef Tokunaga A, Oya T, Ishii Y, Motomura H, Nakamura C et al (2008) PDGF receptor beta is a potent regulator of mesenchymal stromal cell function. J Bone Miner Res 23:1519–1528PubMedCrossRef
47.
Zurück zum Zitat Varga J, Pasche B (2009) Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5(4):200–206PubMedCrossRef Varga J, Pasche B (2009) Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5(4):200–206PubMedCrossRef
48.
Zurück zum Zitat Hunzelmann N, Brinckmann J (2010) What are the new milestones in the pathogenesis of Systemic Sclerosis? Ann Rheum Dis 69:52–56CrossRef Hunzelmann N, Brinckmann J (2010) What are the new milestones in the pathogenesis of Systemic Sclerosis? Ann Rheum Dis 69:52–56CrossRef
49.
Zurück zum Zitat von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629CrossRef von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629CrossRef
50.
51.
Zurück zum Zitat Rouwkema J, de Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional provascular network in a bone tissue engineering construct. Tissue Eng 12(9):2685–2693PubMedCrossRef Rouwkema J, de Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional provascular network in a bone tissue engineering construct. Tissue Eng 12(9):2685–2693PubMedCrossRef
52.
Zurück zum Zitat Forte A, Della Corte A, De Feo M, Cerasuolo F, Cipollaro M (2010) Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res 88:395–405PubMedCrossRef Forte A, Della Corte A, De Feo M, Cerasuolo F, Cipollaro M (2010) Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res 88:395–405PubMedCrossRef
Metadaten
Titel
Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine
verfasst von
Paola Cipriani
Alessandra Marrelli
Paola Di Benedetto
Vasiliki Liakouli
Francesco Carubbi
Piero Ruscitti
Saverio Alvaro
Ilenia Pantano
Antonio Francesco Campese
Paola Grazioli
Isabella Screpanti
Roberto Giacomelli
Publikationsdatum
01.07.2013
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 3/2013
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-013-9338-9

Weitere Artikel der Ausgabe 3/2013

Angiogenesis 3/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.