Skip to main content
Log in

Quantitative positron emission tomography imaging of angiogenesis in rats with forelimb ischemia using 68Ga-NOTA-c(RGDyK)

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Gallium-68-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)—cyclic Arg-Gly-Asp-D-Tyr-Lys (c(RGDyK)) was developed for αvβ3 targeting, and is a promising agent for imaging of cancer and disorders related to angiogenesis. In this study, we performed kinetic analysis of 68Ga-NOTA-c(RGDyK) in rats with surgically induced forelimb ischemia, and immunohistochemical analysis was also performed to assess αvβ3 immuno-staining level. Animal models were created by excision of the left brachial vessels, and a sham operation was performed on the right brachial region under 2 % isoflurane anesthesia. Using an animal positron emission tomography/computed tomography (PET/CT) scanner, a list mode PET scan (120 min) was started with the injection of 68Ga-NOTA-c(RGDyK) via the tail vein at 3, 5 and 7 days after ischemic surgery. Volumes of interest were drawn on the left ventricle, sham operation, control, and ischemic regions. Compartmental and two graphical analyses (Logan and RE plots) were performed for kinetic parameter estimation. The immunohistochemical analysis was also performed after the last PET scan, and cell components were scored on a six point scale for quantification of immuno-staining level (0-negative to 5-very high). A 3-compartment model with reversible binding best described the tissue time-activity curves. The distribution volume of the ischemic region was significantly higher than that of the sham operation (P < 10−6) and control region (P < 10−9). Both the Logan and RE plots showed high correlation with compartmental analysis (R2 = 0.96 and 0.95 for Logan and RE, respectively). The temporal changes in distribution volume and binding potential were not significant. The immuno-staining level of the ischemic region was significantly higher than that of sham operation (P < 10−4) and control region (P < 10−8). Kinetic modeling studies with dynamic 68Ga-NOTA-c(RGDyK) PET scan are feasible based on an image-derived input function in a rat ischemia model. The kinetic modeling analysis performed in this study will be useful for the quantitative evaluation of 68Ga-NOTA-c(RGDyK) binding to αvβ3 in angiogenic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60(2):203–212

    PubMed  CAS  Google Scholar 

  2. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    Article  PubMed  CAS  Google Scholar 

  4. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  PubMed  CAS  Google Scholar 

  5. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2(2):91–100

    Article  PubMed  Google Scholar 

  6. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164

    Article  PubMed  CAS  Google Scholar 

  7. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2(2):83–90

    Article  PubMed  Google Scholar 

  8. Shimaoka M, Springer TA (2003) Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2(9):703–716

    Article  PubMed  CAS  Google Scholar 

  9. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2(3):e70

    Article  PubMed  Google Scholar 

  10. Haubner R, Beer AJ, Wang H, Chen X (2010) Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 37(Suppl 1):S86–S103

    Article  PubMed  Google Scholar 

  11. Yang J, Guo H, Miao Y (2010) Technetium-99 m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nucl Med Biol 37(8):873–883

    Article  PubMed  CAS  Google Scholar 

  12. Yan Y, Chen K, Yang M, Sun X, Liu S, Chen X (2011) A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging. Amino Acids 41(2):439–447

    Article  PubMed  CAS  Google Scholar 

  13. Picchio M, Beck R, Haubner R, Seidl S, Machulla HJ, Johnson TD, Wester HJ, Reischl G, Schwaiger M, Piert M (2008) Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med 49(4):597–605

    Article  PubMed  Google Scholar 

  14. Liu Z, Yan Y, Liu S, Wang F, Chen X (2009) 18F, 64Cu, and 68Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug Chem 20(5):1016–1025

    Article  PubMed  CAS  Google Scholar 

  15. Yoshimoto M, Ogawa K, Washiyama K, Shikano N, Mori H, Amano R, Kawai K (2008) αvβ3 Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer 123(3):709–715

    Article  PubMed  CAS  Google Scholar 

  16. Guo N, Lang L, Li W, Kiesewetter DO, Gao H, Niu G, Xie Q, Chen X (2012) Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model. PLoS One 7(5):e37506

    Article  PubMed  CAS  Google Scholar 

  17. Jacobson O, Zhu L, Niu G, Weiss ID, Szajek LP, Ma Y, Sun X, Yan Y, Kiesewetter DO, Liu S, Chen X (2011) MicroPET imaging of integrin αvβ3 expressing tumors using 89Zr-RGD peptides. Mol Imaging Biol 13(6):1224–1233

    Article  PubMed  Google Scholar 

  18. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, Lee DS, Chung JK, Lee MC (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49(5):830–836

    Article  PubMed  CAS  Google Scholar 

  19. Kim JH, Lee JS, Kang KW, Lee HY, Han SW, Kim TY, Lee YS, Jeong JM, Lee DS (2012) Whole-body distribution and radiation dosimetry of 68Ga-NOTA-RGD, a positron emission tomography agent for angiogenesis imaging. Cancer Biother Radiopharm 27(1):65–71

    Article  PubMed  CAS  Google Scholar 

  20. Shetty D, Lee YS, Jeong JM (2010) 68Ga-labeled radiopharmaceuticals for positron emission tomography. Nucl Med Mol Imaging 44(4):233–240

    Article  CAS  Google Scholar 

  21. Breeman WA, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging 34(7):978–981

    Article  PubMed  Google Scholar 

  22. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, Weber WA, Schwaiger M (2005) Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46(8):1333–1341

    PubMed  CAS  Google Scholar 

  23. Ferl GZ, Dumont RA, Hildebrandt IJ, Armijo A, Haubner R, Reischl G, Su H, Weber WA, Huang SC (2009) Derivation of a compartmental model for quantifying 64Cu-DOTA-RGD kinetics in tumor-bearing mice. J Nucl Med 50(2):250–258

    Article  PubMed  Google Scholar 

  24. Lee KH, Jung KH, Song SH, Kim DH, Lee BC, Sung HJ, Han YM, Choe YS, Chi DY, Kim BT (2005) Radiolabeled RGD uptake and αv integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med 46(3):472–478

    PubMed  CAS  Google Scholar 

  25. Wang Y, Seidel J, Tsui BM, Vaquero JJ, Pomper MG (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47(11):1891–1900

    PubMed  Google Scholar 

  26. Nakamura Y, Tsuji M, Arai S, Ishihara C (1995) A method for rapid and complete substitution of the circulating erythrocytes in SCID mice with bovine erythrocytes and use of the substituted mice for bovine hemoprotozoa infections. J Immunol Methods 188(2):247–254

    Article  PubMed  CAS  Google Scholar 

  27. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840

    Article  PubMed  CAS  Google Scholar 

  28. Zhou Y, Ye W, Brasić JR, Crabb AH, Hilton J, Wong DF (2009) A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies. Neuroimage 44(3):661–670

    Article  PubMed  Google Scholar 

  29. Zhou Y, Ye W, Brasić JR, Wong DF (2010) Multi-graphical analysis of dynamic PET. Neuroimage 49(4):2947–2957

    Article  PubMed  Google Scholar 

  30. Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, Oh SJ, Lee DS, Moon DH (2008) Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49(12):2057–2066

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants [2008-2003852, R31-10089 (WCU Program), 2011K000709, NRF-2012M2A2A7035853] from the National Research Foundation and the Converging Research Center Program funded by the Ministry of Education, Science, and Technology.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2013_9359_MOESM1_ESM.pptx

Supplementary Figure 1. Relative uptake in the ischemic and sham regions to the control region. The error bar is the standard deviation. (PPTX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Kim, YH., Kim, Y.J. et al. Quantitative positron emission tomography imaging of angiogenesis in rats with forelimb ischemia using 68Ga-NOTA-c(RGDyK). Angiogenesis 16, 837–846 (2013). https://doi.org/10.1007/s10456-013-9359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9359-4

Keywords

Navigation